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Abstract Selection of recombinant inbred lines (RILs)

from elite hybrids is a key method in maize breeding espe-

cially in developing countries. The RILs are normally

derived by repeated self-pollination and selection. In this

study, we first investigated the accuracy of different models

in predicting the performance of F1 hybrids between RILs

derived from two elite maize inbred lines Zong3 and 87-1,

and then compared these models through simulation using a

wider range of genetic models. Results indicated that

appropriate prediction models depended on genetic archi-

tecture, e.g., combined model using breeding value and

genome-wide prediction (BV?GWP) has the highest pre-

diction accuracy for high VD/VA ratio ([0.5) traits. Theo-

retical studies demonstrated that different components of

genetic variance were captured by different prediction

models, which in turn explained the accuracy of these models

in predicting the F1 hybrid performance. Based on genome-

wide prediction model (GWP), 114 untested F1 hybrids

possibly having higher grain yield than the original F1 hybrid

Yuyu22 (the single cross between Zong3 and 87-1) have

been identified and recommended for further field test.

Introduction

Hybrid maize (Zea mays L.) breeders have been developing

a large number of inbred lines and evaluating their per-

formance in crosses (Hallauer 1990). The identification of

elite F1 hybrids between two inbred lines is the major

objective in hybrid maize breeding. However, the number

of potential crosses grows rapidly as more and more inbred

lines are derived, and the field evaluation of hybrid per-

formance requires large resources. For most hybrid

breeding programs, only a small proportion of crosses can

be evaluated in the field. An accurate prediction of hybrid

performance prior to and after some field testing is of

crucial importance in maize breeding.

A number of statistical models have been proposed to

predict the hybrid performance in maize breeding. Hybrid

prediction from inbred line per se performance is quite

straight forward, but not effective because of the high level

of dominance for grain yield. General combining ability

(GCA) has been used in predicting hybrid performance
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(Allard 1960; Cockerham 1967; Melchinger et al. 1987).

GCA can be estimated by crossing individual inbred lines

with as many other inbred lines as possible, along with

various genetic mating designs including NCI (North

Carolina design I), NCII, NCIII (Comstock and Robinson

1948, 1952), TTC (triple test crosses) (Kearsey and Jinks

1968) and Diallel design (Griffing 1956a, 1956b), etc.

However, it ignores specific combining ability (SCA),

which is related to heterosis and constitutes an important

component of hybrid performance (Gardner and Eberhart

1966). Improving GCA-based model by taking SCA effects

into consideration showed advantageous when SCA vari-

ances were of similar or larger importance compared with

GCA variances (Schrag et al. 2006; Vuylsteke et al. 2000).

Genetic distance between parental lines based on ran-

dom molecular markers, regarded as indicator of genetic

diversity, can be used to predict hybrid performance.

However, results from previous studies were inconsistent

(Melchinger 1999; Jordan et al. 2003). Charcosset and

Essioux (1994) attributed the low correlations between

predicted and observed values to (1) no or only loose

linkage of QTL affecting traits to molecular markers

employed in estimating genetic distance and (2) different

linkage phases between QTL and marker alleles exist in the

maternal and paternal gametic arrays. Frisch et al.

(2010)demonstrated that genetic distance based on tran-

scription profiles was more precise than earlier prediction

models using molecular markers.

Being a general method for predicting random effect,

best linear unbiased prediction (BLUP) has been widely

used in animal breeding (Henderson 1975, 1984), and was

more recently advocated in plant breeding (Bernardo 1994,

1995, 1996a, 1996b, 1998, 1999). It is being used in gen-

ome-wide selection for quantitative traits in maize (Ber-

nardo and Yu 2007). Recently BLUP has been compared to

other statistical models for genome-wide selection such as

support vector machine regression (Maenhout et al. 2010)

and Bayesian methods (Meuwissen et al. 2001; Lorenzana

and Bernardo 2009).

Mating and field experimental designs are crucial for

genetic analysis and hybrid prediction. Hua et al. (2003)

proposed a novel genetic population consisting of single

crosses between a set of recombinant inbred lines (RILs)

derived from two parental lines, which was called

‘‘immortalized F2’’ (or IF2). This population has the same

genetic architecture as the conventional F2, but each

genotype in the population can be repeated and regenerated.

IF2 population has been used to investigate the genetic basis

of heterosis (Tang et al. 2010), but few studies have been

conducted on performance prediction of F1 hybrid between

RILs derived from two elite inbred lines in maize.

Hybrid prediction in bi-parental population is different

from the prediction of inter-group hybrids for the following

reasons: (1) kinship between individuals in a bi-parental

population is closer than those between two heterotic

groups; (2) prediction in bi-parental population aims to

improve the original F1 hybrid from two founders, through

crossing their RILs. If a bi-parental RIL population is

derived from a commercial hybrid between two elite inbred

lines, it would be interesting to know whether there exist

any F1 hybrids of two RILs resulting in better performance

than the original F1 hybrid. Although the probability is low,

and identified hybrid would make a significant impact. The

objectives of this study were therefore (1) to construct

statistical models to predict performance of F1 hybrids in a

maize IF2 population; (2) to assess different prediction

models in real and simulated populations, and (3) to identify

potential RIL crosses outperforming the original F1 hybrid.

Materials and methods

Genetic population

Yuyu22 is an elite maize single cross in China and exhibits

high level of heterosis on grain yield. One parent of

Yuyu22 is the dent-inbred line Zong3 (P1), selected from a

synthetic population of Chinese domestic germplasm, and

the other parent is the flint-inbred line 871 (P2), selected

from exotic germplasm. A total of 294 RILs were derived

through single seed descent of Yuyu22. Similar to the

procedure described by Hua et al. (2003), 294 RILs were

randomly divided into two groups, each group having 147

RILs. Then, single crosses were randomly made between

the two groups without replacement. This procedure was

repeated three times, and finally 441 (147 9 3) single

crosses were produced, forming the IF2 population.

Genotypic and phenotypic data used in this study were

generated by the National Maize Improvement Center of

China and was described in detail in Tang et al. (2010). The

RIL and IF2 population were planted in 2003 and 2004 in

Beijing (north of China, average daily temperature of

11.8 �C, and average annual rainfall of 585 mm) and

Xunxian, Henan Province (center of the North China Plain,

average daily temperature 14.2 �C, and average annual

rainfall 784 mm). At two locations, populations of RIL and

IF2 were in neighbored blocks, each planted in a random-

ized complete block design with three replications. Each

plot included one row, 4-m long, with 0.67 m between

rows. Population density was 45,000 plants per ha. After

maturity, ten ears from consecutive plants in each plot were

harvested by hand- and air-dried until the grain moisture

reached 13 %. The 294 RILs and their 441 F1 hybrids were

evaluated for ten traits: ear weight (kg), grain yield (t/ha),

kernels per row, ear diameter (cm), ear length (cm), row

number, length of branch (cm), number of branches, ear
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height (cm) and plant height (cm) (Table S1). The 294

RILs were screened by 261 polymorphic SSR markers

covering the whole maize genome. Genotype of F1 hybrid

was deduced from its two RIL parents.

Analysis of phenotypic data

The phenotypic data were analyzed for sources of variation

using the following model:

yijk ¼ lþ ei þ rj þ gk þ gek�i þ eijk; ð1Þ

where yijk is trait value of the ith environment, jth replication

and kth entry; l is the overall mean; ei is the ith environment

effect; rj is the jth replication effect; gk is the kth entry effect;

gek9i is the interaction effect of the kth entry by the ith

environment; eijk is the residual effect. In Eq. (1), all the

variables except l are considered random effects. Broad

sense heritability (H2) was equal to genetic variance (VG)

divided by summation of genetic variance (VG), G 9 E

variance (VG9E) and error variance (Ve). Assuming the

Yuyu22 F2 is the reference population, genetic variance (VG)

can be partitioned into additive and dominance variances (VA

and VD), ignoring the epistatic variance (VI). Three methods

were used to dissect the two genetic variance components,

and the best variance decomposition method was determined

by simulation study. Firstly, VA is included in genetic

variance of the RIL population, and both VA and VD are

included in genetic variance of the IF2 population. So, under

the condition that there are two equally frequent alleles in the

population, we have,

VA ¼ 1

2
VGðRILÞ; and VD ¼ VGðIF2Þ �

1

2
VGðRILÞ; ð2Þ

where VGðRILÞ is genetic variance of the RIL population and

VGðIF2Þ is genetic variance of the IF2 population. Secondly,

assuming no disequilibrium between loci, genetic variance can

be estimated from QTL additive (a) and dominance (d) effects:

VA ¼ 1

2

X
a2; and VD ¼ 1

4

X
d2: ð3Þ

Thirdly, assuming no disequilibrium between loci, genetic

covariance between F1 hybrids and their two parents is equal

to the additive variance in bi-parental population (Table S2),

which is different from the random-mating population where

genetic covariance is half of additive variance. So additive

and dominance variance can also be estimated by,

VA ¼ covOP ¼ cov O;
1

2
ðP1 þ P2Þ

� �
; and

VD ¼ VGðIF2Þ � VA:
ð4Þ

Narrow sense heritability (h2) was equal to additive vari-

ance (VA) divided by summation of genetic variance (VG),

G 9 E variance (VG9E) and error variance (Ve).

Prediction based on inbred line per se performance

Prediction based on inbred line per se performance was

described in Hallauer et al. (2010), Smith (1986), and Zaidi

et al. (2003). The predicted value of F1 hybrid crossed by

two RILs i and j, denoted by ĝij, was calculated as,

ĝij ¼ l̂þ 1

2
ðĝi þ ĝjÞ; ð5Þ

where l̂ is the estimate of population mean from Eq. (1);

ĝi and ĝj are genotypic values of the two parental lines,

estimated by Eq. (1).

Prediction based on GCA

In IF2 population, if several F1 hybrids have one common

parental line, GCA of this common parental line was cal-

culated by means of its F1 hybrids. GCA has been used to

predict single, three-way and double crosses (Jenkins 1934;

Cockerham 1967; Melchinger et al. 1987). GCA of the ith

inbred line, defined as GCAi, was estimated by:

GCAi ¼ l̂þ 1

2
ðĝi�m þ ĝi�nÞ; ð6Þ

where ĝi�m and ĝi�n are genotypic values of tested F1 hybrids

crossed by the ith inbred line with mth, nth inbred lines,

estimated by Eq. (1). Then, the predicted value of F1 hybrid

was calculated by GCA of its two parental lines i and j;

ĝij ¼ 1

2
ðGCAi þ GCAjÞ: ð7Þ

Prediction based on quantitative trait loci mapping

Combined QTL mapping was conducted in the mixture

population of RILs and F1 hybrids using inclusive com-

posite interval mapping (Li et al. 2007; Zhang et al. 2008)

implemented in the integrated software QTL IciMapping

(http://www.isbreeding.net). The use of mixture population

avoids the discrepancy of QTL location and effect when

RIL and IF2 populations are used separately. For the 1:1

mixture of RIL and IF2, three genotypes at one locus have

frequencies 3/8, 1/4, and 3/8, similar to the genetic archi-

tecture of F3 bulk populations. The observations in QTL

mapping model are genotypic values of RILs and F1

hybrids in mixture population. QTL mapping results used

for prediction included (1) additive and dominance (a and

d) effects of QTL, and (2) genotypes of identified QTL of

each RIL. Therefore, genotypes of QTL in untested F1

hybrid were derived from its RIL parents, and predicted

value of F1 hybrid was calculated by

ĝ ¼ l̂þMâþ Nd̂; ð8Þ

where â and d̂ are additive and dominance effects of QTL;

M and N are incidence matrices where the number of rows
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equals the size of predicted F1 hybrids and the number of

columns equals the size of QTL. In matrix M, 1, 0, and -1

stands for QTL genotypes QQ, Qq, and qq, respectively; in

matrix N, 0 for homozygous QTL genotypes QQ and qq,

and 1 for heterozygous QTL genotype Qq.

Genome-wide prediction

Genotypic values and genotypes of RILs and their F1

hybrids were used to estimate a and d of molecular markers

from a mixed model. The mixed linear model was denoted

by

l̂þ ĝ ¼ Xbþ Z1aþ Z2d þ e; ð9Þ

where l̂þ ĝ is estimated by Eq. (1) and is the vector

including values of RILs and F1 hybrids; b is the vector of

fixed effect only including overall mean; X is the incidence

matrix with elements 1; a and d are vectors of additive and

dominance effects, which are assumed to be random; e is

the residual vector; Z1 is incidence matrix of a, with

elements 1, -1, and 0 corresponding to the three marker

types MM, mm, and Mm, respectively; Z2 is incidence

matrix of d, with elements 0 and 1 corresponding to the

homozygous marker type and heterozygous marker type.

The fixed and random effects were obtained by solving the

mixed model equation;

b̂

â

d̂

2

64

3

75¼
X0R�1X X0R�1Z1 X0R�1Z2

Z1
0
R�1X Z1

0
R�1Z1þA�1 Z1

0
R�1Z2

Z2
0
R�1X Z2

0
R�1Z1 Z2

0
R�1Z2þD�1

2

64

3

75

�
X0R�1ðl̂þ ĝÞ
Z1

0
R�1ðl̂þ ĝÞ

Z2
0
R�1ðl̂þ ĝÞ

2

64

3

75;

A�1 ¼ mr2
e

r2
A

I; and D�1 ¼ mr2
e

r2
D

I

ð10Þ

where residual matrix R and I are identity matrices; r2
A, r2

D

and r2
e are additive variance, dominance variance and error

variance, respectively; m is the number of markers. The

genotypic value of F1 hybrid was predicted as:

ĝ ¼ Xb̂þ Z1âþ Z2d̂: ð11Þ

Prediction based on breeding value

In the reduced animal model of BLUP (Quaas and Pollak

1980), breeding value of inbred line was calculated by:

l̂þ ĝ ¼ Xbþ Zuþ e; ð12Þ

where l̂þ ĝ was estimated by Eq. (1), representing geno-

typic values of RILs and F1 hybrids; u is the vector of

breeding values of RILs and Z is the incidence matrix of u.

Variable u is assumed to be random and followed a multi-

variation normal distribution, u�N 0;Kr2
u

� �
, where the

kinship matrix (K) was calculated using the marker data

and the software SPAGeDi (Hardy and Vekemans 2002).

Vectors b and e and incidence matrix X are defined as in

Eq. (9).

Prediction based on breeding value and genome-wide

estimation of marker dominance effect

Dominance effect of molecular marker was estimated by a

mixed model in IF2 population, in which the dependent

value was the difference between l̂þ ĝ from Eq. (1) and

breeding values u from Eq. (12):

l̂þ ĝ� Zû ¼ XbþQd þ e; ð13Þ

where d is the vector of dominance effect and Q is

incidence matrix of genotypes. The genotypic value of F1

hybrid was predicted as:

ĝ ¼ Xb̂þ Zûþ Pd̂: ð14Þ

Prediction in actual RIL and IF2 populations in maize

All RILs together with the 294 F1 hybrids (147 9 2)

selected from the 441 hybrids (147 9 3) were used to build

the prediction model, forming the training dataset. The

remaining F1 hybrids were used to evaluate the effective-

ness of prediction, forming the validation dataset. Perfor-

mance of F1 hybrids in the validation dataset were

estimated by the prediction model built in the training

dataset, and squared correlation coefficient (represented by

R2) between the predicted and observed performance was

used to measure the accuracy of prediction. The procedure

of sampling from 441 hybrids (147 9 3) was repeated

three times, to give the standard error of R2.

Prediction in simulated populations

To assess and validate different prediction models, we

conducted simulation studies on additive and dominance

genetic model, and additive, dominance and epistatic

genetic model. Linkage map built from the maize RIL

population was used in simulation, and 50 QTL were

assumed to control a trait in interest. In additive and

dominance genetic model, we generated one hundred sets

of random additive (a) and dominance (d) effects of the 50

QTL, where the genetic effects followed the uniform dis-

tribution between -1 and 1. According to the effects of

QTL, the ratio of dominance variance to additive variance

(VD/VA) was approximately calculated from 1
2

P50
m¼1 d2=

P50
m¼1 a2. Among the one hundred sets of QTL effects, four

sets were chosen to represent four types of genetic
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architectures, whose VD/VA was closest to 0, 0.5, 1, and 2,

respectively (Table 1). When interaction between two QTL

was considered in additive, dominance and epistatic

genetic model, we also generated one hundred sets of

random additive (a) and dominance (d) effects of 50 QTL

and 10 pairs of epistatic effects (aa, ad, da, and dd), where

all effects followed the uniform distribution between -1

and 1. The VI was approximately calculated by

VI ¼
P

1
4
aa2 þ 1

8
ad2 þ 1

8
da2 þ 1

16
dd2

� �
. Four of the one

hundred sets of QTL effects were chosen to represent four

types of genetic architectures, whose VD/VA was closest to

0.5, and VI/(VD ? VA) was closest to 0, 0.5, 1, and 2,

respectively.

For each level of variance ratio, a total of 294 RILs were

simulated by the genetics and breeding simulation tool of

QuLine, formerly called QuCim (Wang et al. 2003, 2004),

and 43,071 F1 hybrids were made out of the 294 RILs.

Similar to the actual populations, 294 RILs and 294 F1

hybrids were used as the training dataset, and the other F1

hybrids were used as the validation dataset. The simulation

was repeated three times, i.e. three sets of RIL and IF2

populations were constructed for each type of genetic

architecture.

Results

Identification of significant QTL

In training dataset, the mixture population of RILs and IF2

had a size of 588. When the LOD threshold of 1.5 was

applied, a total 187 QTL were identified for the ten traits

(Table S3). They were distributed on the whole genome.

Numbers of QTL ranged from 11 to 24, and total pheno-

typic variance explained by QTL was among 16.1 and

52.4 % across the ten traits. QTL identified in the mixture

population were then used in prediction.

To show the advantage of using the mixture population

in QTL mapping, we compared mapping results in the

mixture population with those in RIL and IF2 (Fig. S1).

Under the LOD threshold of 1.5, less QTL were identified

in the RIL population compared with IF2 and the mixture

population. This is understandable because of (1) larger

population size in IF2 and the mixture populations which

have more power to detect QTL; (2) some QTL with sig-

nificant dominance but non-significant additive effects. In

the IF2 population, more QTL were detected for ear weight,

grain yield, kernels per row and ear length. For other traits,

the mixture population identified more QTL. Locations of

most QTL from the three populations were overlapped.

Additive effect estimated in the three populations was

almost consistent, and dominance effect estimated in IF2

was greater than that in mixture populations (results not

shown).

Heritability, genetic variance and its components

Estimated heritability depends on which population is

referred to. In the present study, broad sense heritability

(H2) of each trait had different values when estimated from

RIL, IF2 and the mixture populations (Fig. 1). H2 was the

highest in the mixture population for ear weight, grain

yield, kernels per row, ear diameter, ear length, row

number, length of branch, plant height. For other two traits,

number of branches and ear height, H2 was the highest in

RILs. H2 in IF2 was the lowest for all traits except for ear

weight and row number.

By ANOVA, phenotypic variance was divided into

genetic, environmental, G 9 E, and error variances for the

ten traits in RIL, IF2 and the mixture populations (Table

S4). Though having different values, variance components

almost ranked in similar orders among the three kinds of

populations. For all traits except ear weight in RILs, grain

yield, and ear weight in IF2, genetic variance had the

highest value, indicating that genetic effect was the major

factor on phenotypic performance of these traits. G 9 E

and environmental variances were also significant statisti-

cally on these traits.

Table 1 Theoretical genetic

variances in simulation study

VA additive variance, VD

dominance variance, VI epistatic

variance, VG genetic variance

Genetic model VA VD VI VG

Additive and dominance model

VD/VA = 0.0 5.0 0.0 0.0 5.0

VD/VA = 0.5 5.0 2.5 0.0 7.5

VD/VA = 1.0 5.0 5.0 0.0 10.0

VD/VA = 2.0 5.0 10.0 0.0 15.0

Additive, dominance and epistatic model

VI/(VA ? VD) = 0.0, VD/VA = 0.5 5.0 2.5 0.0 7.5

VI/(VA ? VD) = 0.5, VD/VA = 0.5 5.0 2.5 3.7 11.2

VI/(VA ? VD) = 1.0, VD/VA = 0.5 5.0 2.5 7.5 15.0

VI/(VA ? VD) = 2.0, VD/VA = 0.5 5.0 2.5 15.0 22.5
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Genetic variance was further dissected into additive and

dominance components using three methods: ANOVA of

RIL and IF2 populations, summation of QTL a and

d effects, and parent-offspring regression (Table 2). In the

actual population, different methods resulted in different

estimations of additive and dominance genetic variances.

For example, VA and VD of ear weight were estimated at

0.24 and 0.80 from ANOVA of RIL and IF2 populations,

0.32 and 0.16 from summation of QTL a and d effects, and

0.14 and 0.90 from parent-offspring regression.

The best variance decomposition method can hardly be

determined in actual populations, but can be properly

determined in simulated populations, where true genetic

variances are known. Under an additive and dominance

model (Table 1), simulation studies demonstrated that VA

from ANOVA of RIL and IF2 populations and from parent-

offspring regression approximated their true values, e.g. the

true VA was 5.0, and VA was estimated at 4.34 and

4.21–4.30, respectively (Table 2). However, estimated VA

from identified QTL effects was 4.76–11.90. The overes-

timation is likely caused by upward bias of effect estimates

for detected, true and the presence of false positives

resulting from the low LOD threshold applied for declaring

statistical significance. VD in different scenarios (Table 1)

was slightly underestimated from ANOVA of RIL and IF2

populations, and from parent-offspring regression, but was

more clearly underestimated from identified QTL effects

(Table 2). When epistatic effects were included in genetic

0.0 

0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

0.7 

0.8 

0.9 

1.0 

EW GY KPR ED EL RN LB NB EH PH

B
ro

ad
 s

en
se

 h
er

ita
bi

lit
y 

(H
2 ) RIL IF2 Mixture

Fig. 1 Broad sense heritability (H2) of ten traits calculated in the

RIL, IF2 and mixture populations. EW, GY, KPR, ED, EL, RN, LB,

NB, EH and PH are abbreviations for ear weight, grain yield, kernels

per row, ear diameter, ear length, row number, length of branch,

number of branches, ear height, and plant height, respectively

Table 2 Additive and dominance variances estimated using three variance decomposition methods for ten traits in the actual and simulated

populations

Trait VA VD

Method I Method II Method III Method I Method II Method III

Actual population

Ear weight 0.24 0.32 0.14 0.80 0.16 0.90

Grain yield 0.27 0.28 0.09 0.51 0.04 0.69

Kernels per row 5.27 1.94 1.54 2.62 0.69 6.35

Ear diameter 0.05 0.03 0.03 0.00 0.01 0.02

Ear length 1.27 1.27 0.64 0.82 0.17 1.46

Row number 1.15 1.06 0.94 0.73 0.05 0.94

Length of branch 6.13 3.76 4.93 0.98 0.24 2.17

Number of branches 6.11 5.38 5.96 2.80 0.93 2.95

Ear height 106.50 49.88 84.00 0.99 11.04 23.48

Plant height 257.44 153.40 207.44 0.00 14.30 19.42

Simulated population

VD/VA = 0.0 4.34 11.90 4.30 0.00 0.07 0.10

VD/VA = 0.5 4.34 8.23 4.26 2.19 2.45 2.26

VD/VA = 1.0 4.34 5.75 4.21 4.64 3.61 4.77

VD/VA = 2.0 4.34 4.76 4.22 8.94 7.39 9.05

VI/(VA ? VD) = 0.0a 4.34 8.23 4.26 2.19 2.45 2.26

VI/(VA ? VD) = 0.5a 5.71 6.28 5.25 4.33 2.38 4.79

VI/(VA ? VD) = 1.0a 9.07 10.89 6.45 4.69 4.16 7.31

VI/(VA ? VD) = 2.0a 10.32 10.16 8.06 11.17 4.91 13.42

Method I: variance estimated from ANOVA of RIL and IF2 populations; Method II: variance estimated from summation of QTL a and d effects;

Method III: variance estimated from parent-offspring regression

VA additive variance, VD dominance variance
a VI is epistatic variance, and the ratio of dominance variance and additive variance is equal to 0.5, VD/VA = 0.5
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model, i.e., under an additive, dominance and epistatic

model (Table 1), VA and VD were both overestimated from

all variance decomposition methods, compared with true

VA and VD (Table 2). The overestimation might be

explained by the inclusion of VAA on the estimation of VA,

and the inclusion of VAD, VDA, and VDD on the estimation

of VD.

In summary, genetic variance decomposition using

ANOVA of RIL and IF2 populations was slightly better

than parent-offspring regression and much better than

summation of QTL a and d effects. Even though the

genetic variance components were biased estimated, rank

of traits arranged by the ratio VD/VA was much the same for

the three estimation methods. In the actual population, VD/

VA of ear weight and grain yield was the highest but those

of ear height and plant height were the lowest.

Correlation between predicted and observed F1 hybrid

performances in the actual maize IF2 population

R2 between predicted and observed performances of F1

hybrids varied among prediction models, e.g., for grain

yield, R2 varied from 0.09 with ILP to 0.42 with BV?GWP

(Table 3). In summary, QTL model had the lowest R2

(0.13–0.56); Model GCA had the intermediate R2

(0.27–0.53); ILP, GWP, BV and BV?GWP had the highest

R2, depending on the trait in consideration. Compared with

other prediction models, ILP resulted in the highest R2 for

number of branches (0.69), ear height (0.71) and plant

height (0.66); GWP resulted in the highest R2 for ear

diameter (0.56) and length of branch (0.65); BV resulted in

the highest R2 for row number (0.66); BV?GWP resulted

in the highest R2 for ear weight (0.44), grain yield (0.42),

kernels per row (0.39) and ear length (0.49).

Prediction models ILP, GWP, BV and BV?GWP

resulted in the highest R2 in at least one trait. Accuracy of

these models in predicting F1 hybrid depended on the

genetic architecture of the trait in interest (Fig. 2). H2 is the

proportion of phenotypic variance explained by VA and VD,

and h2 is that explained by VA. In this sense, greater dif-

ference between H2 and h2 indicates more significance of

VD. In Fig. 2, the ten traits were arranged by H2 from the

lowest to the highest. When H2 increased to 0.6, accuracy

of the four models except for ILP almost reached their

highest levels. For ear weight, grain yield, kernels per row,

ear diameter, and ear length, when H2\0.63 and h2\0.32,

ILP had the poorest performance compared with other

three models. On the contrary, BV?GWP had the best

performance (Fig. 2). Furthermore, as the increase of her-

itability of traits with H2 \ 0.63 and h2 \ 0.32, the per-

formance of ILP in predicting F1 hybrids increased from

0.14 for ear weight to 0.42 for ear diameter. However, the

performance of BV?GWP remains on high level

(0.39–0.54), showing stability of BV?GWP at different

levels of heritability (Fig. 2). BV and GWP were also

stable, but their performance could not exceed the perfor-

mance of BV?GWP.

When H2 [ 0.63 and h2 [ 0.32 (Fig. 2), for length of

branch, number of branches, ear height, and plant height,

BV was the poorest prediction model except for its slightly

better performance compared with BV?GWP for number

of branches. ILP was the best, except for its slightly poorer

performance compared with GWP for length of branch. H2

was the theoretical upper limit of R2 between observed and

predicted F1 hybrids. R2 was equal to or greater than H2 in

most traits (Fig. 2), indicating that the best prediction

models have captured most, if not all, genetic variance.

Any further improvement in prediction becomes less pos-

sible and more difficult. In some cases, R2 was greater than

H2, which could not be, but might be caused by sampling

error, deviation in different models, or deviation when

calculating H2. For other traits, there might still have some

space for further improvements.

Correlation between predicted and observed F1 hybrids

in simulated populations

Prediction models were applied in simulated populations

representing various genetic architectures. Results indicated

that prediction accuracy of all models distinctly varied for

traits with different VD/VA. When only additive effects were

included in genetic model, all prediction models except

GCA and QTL resulted in high R2 between predicted and

observed F1 hybrids, more than 0.9 (Fig. 3). When VD/

VA = 0.5, VD/VA = 1 and VD/VA = 2, the highest R2 were

generated by GWP and BV?GWP. Model GWP performed

as well as BV?GWP for traits with higher VD/VA ratios,

which was inconsistent with what we found in actual maize

population. The discrepancy was possibly caused by the

more complicated genetic architecture in actual data.

In additive, dominance and epistatic genetic model, the

trend of prediction model performance was the same as that

in additive and dominance genetic model (Fig. 3). That

was, BV?GWP and GWP were better than other prediction

models as could be seen from the highest R2 between

predicted and observed F1 hybrids. In comparison with

additive and dominance genetic model, the R2 of all pre-

diction models dropped off when epistatic variance existed

in traits, and the prediction accuracy decreased along with

the increase of VI/(VD ? VA). Take GWP as an example,

when VI/(VD ? VA) was increased from 0 to 2, R2

decreased from 0.78 to 0.40. Therefore, the presence of

epistatic variance complicates all prediction models and

reduces the prediction accuracy. High-accuracy prediction

can only be achieved when VA and VD are the major

genetic variance.
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Prediction of elite F1 hybrids and elite recombinant

inbred lines

Prediction models ILP, GWP, BV and BV?GWP produced

the highest R2 in corresponding traits, and were used to

illustrate the prediction of untested F1 hybrids. Predicted

values by the four models were different even for the same

F1 hybrid, due to some systematic errors. The best 50

combinations based on prediction were shown in Table S5,

from which the best F1 hybrid and RIL could be determined

by predicted performance and the repeatability in the four

prediction models. Taking grain yield as an example, hybrid

RIL90 9 RIL153 ranked the first in prediction models BV

and BV?GWP, and the second for GWP. RIL185, RIL153,

RIL187 and RIL90 repeatedly appeared 41, 32, 30 and 29

times in the first 50 best F1 hybrids out of all untested

combinations (Table S5). Therefore, the F1 hybrid

RIL90 9 RIL153 and inbred lines RIL185, RIL153,

RIL187 and RIL90 could be considered as the best RIL

crosses and lines for further field test and breeding.

Genotypic values of the 42,630 untested F1 hybrids were

predicted using GWP, showing satisfactory accuracy in both

actual and simulated populations. Maximum genotypic

values across the untested F1 hybrids were greater than those

of the original F1 for all traits (Table 4). For example, ranges

of genotypic values of all untested F1 hybrids were from 5.20

to 7.90 for grain yield, and the original F1 hybrid was esti-

mated at 7.60 for grain yield. For plant height and ear height,

it should be noted that lower values may be favored and

minimum genotypic values across the untested F1 hybrids

were lower than those of the original F1 (Table 4).

Fewer untested F1 hybrids were identified to be superior to

the original F1 for ear weight and grain yield (Table 4). The

proportions were so low (0.08 % for ear weight; 0.27 % for

grain yield) that it would be very difficult to select the superior

ones without efficient prediction. For other traits, especially ear

diameter and ear height, it might be easy to select F1 hybrids

with higher or lower genotypic values, because the proportions

of superior F1 hybrids were high enough, e.g., 78.29 % for ear

diameter and 74.85 % for ear height. Among the tested F1

hybrids (147 9 3), one hybrid was identified to be superior to

the original F1 in ear weight, four hybrids superior to the ori-

ginal F1 in grain yield, and eight hybrids superior to the original

F1 in kernels per row (Table 4). For other traits, more tested F1

hybrids were identified to be superior to the original.

Discussion

Genetic architecture determines accuracy of prediction

Hybrid prediction can help breeders identify superior F1

hybrids and reduce the number of hybrids for field testing.T
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New available information and tools on molecular markers,

advanced genetic designs and statistical methods have

accelerated the development of new prediction models in

recent years (Bernardo 1995; Meuwissen et al. 2001; Jordan

et al. 2003; Schrag et al. 2006). In this study, we evaluated six

prediction models in an immortal F2 population and in

simulated populations. Theoretical interpretations were

given on the observed prediction effectiveness.

Assuming a trait of interest is controlled by two genes,

denoted by A/a and B/b for demonstration, there are four

genotypes in the RIL population and ten genotypes in the

IF2 population by considering the coupling and repulsive

linkage phases. Assuming no segregation distortion in RIL

population, each allele frequency is 0.5. If two loci are

independent, the theoretical genotypic frequency of each

genotype should be 0.25 (Table S6B). Theoretical geno-

typic values of RILs and F1 hybrids in IF2 could be

obtained from their genotypes (Table S6B and Table 5).

The predicted genotypic values for models BV, ILP, GWP

and BV?GWP were shown in Table 5. For model BV

(Table 5), predicted value of F1 hybrid was the mean value

of breeding values of its parents, and breeding value was
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coefficients (R2) between

observed and predicted F1

hybrid performance of

prediction models in simulated

population for additive and

dominance genetic model

(upper), and additive,

dominance, and epistatic

genetic model (lower). ILP is

based on inbred line per se

performance; GCA based on

general combining ability; QTL

based on QTL mapping; GWP

is genome-wide prediction; BV

based on breeding value;

BV?GWP based on breeding

value and genome-wide

estimation of marker dominance

effect. VA, VD, VI are additive,

dominance, and epistatic

variance, respectively
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equal to the sum of average effects of the genes it carried

(Tables S6A, S6B). Theoretical genotypic values of F1

hybrids included additive, dominance and epistatic effects;

in contrast, predicted values included only genetic effects

related to additive effects (aA, aB, aaAB, adAB and daAB).

Therefore, the difference between theoretical and predicted

values contained dominance effect and partial epistasis.

When model ILP was used for F1 hybrid prediction

(Table 5), the predicted value was the average of parental

theoretical genotypic values which were shown in Table

S6B. The difference between theoretical and predicted

values was 0 if the offspring was homozygous. Otherwise,

dominance and all types of epistatic effects remained in the

difference between theoretical and predicted values. In

other words, genetic effects related to dominance (dA, dB,

adAB, daAB and ddAB) could not be captured by ILP.

Additive and dominance effects of all loci could be

predicted by GWP using Eq. (9), then, predicted value of

F1 hybrid included all additive and dominance effects

(Table 5), and there was no difference between theoretical

and predicted values under additive and dominance genetic

model. However, under additive, dominance, and epistatic

genetic model, GWP could not capture any type of epis-

tasis, therefore, the difference between theoretical and

predicted values included all types of epistasis. Under

prediction model BV?GWP (Table 5), breeding value of

F1 hybrid was equal to the sum of average effects of the

genes it carried (Tables S6A and S6B), and dominance

effects of all loci were predicted using Eq. (13). Thus, all

additive and dominance effects, and half epistasis in the-

oretical genotypic values could be captured in the predicted

genotypic values (Table 5). Among these prediction mod-

els, additive effect could be captured by all models, dom-

inance effect could be captured by GWP and BV?GWP,

and epistasis could be captured by BV (partial), ILP (aaAB)

and BV?GWP. Therefore, BV?GWP was most efficient

as it captured all types of genetic effects.

F1 hybrid of two RILs consists of a range of homoge-

neous and heterogeneous genotypes. The genetic effects in

F1 hybrid include additive, dominance, and epistatic

effects, which determine the accuracy of prediction. For

traits mainly controlled by additive genes, most prediction

models could achieve satisfactory accuracy. For traits with

a complicated genetic architecture, the six prediction

models in this study had different accuracies (Table 5;

Fig. 2). BV?GWP had the ability to capture most genetic

variation, resulting in the highest accuracy among the

prediction models considered in this study. It should be

noted that the best theoretical model may not perform well

in every practical dataset, due to biased genetic effects.

Efficiency of different prediction models

In the present study, phenotypic data, molecular marker

data and genetic relationship between individuals were the

required input for predicting hybrid performance. Among

the six models, ILP and GCA only utilized phenotype, and

their prediction accuracy was lower than those of GWP,

BV, and BV?GWP for most traits, including ear weight,

grain yield, kernels per row, ear diameter, ear length, and

row number. Molecular markers help to dissect the genetic

architecture of breeding traits and increase the accuracy of

prediction. Therefore, in the majority of cases, GWP was

better than ILP and GCA which used only phenotype of

RILs and F1 hybrids. The use of genetic relationship

between individuals increased the prediction accuracy as

well, as can be seen from the higher accuracy of BV, and

BV?GWP compared with ILP, QTL, and GWP. These

observations are consistent with the results shown by De

Los Campos et al. (2009). In conclusion, the more genetic

Table 4 Predicted genotypic values of tested and untested F1 hybrids in the actual population using genome-wide prediction (GWP) model

Trait Genotypic

value of

original F1

hybrid

Range of

genotypic values

of untested F1

hybrids

Number of

untested

superior F1

hybridsa

Proportion of

untested superior

F1 hybrids (%)

Range of

genotypic values

of tested F1

hybrids

Number of

tested

superior F1

hybrids

Proportion of

tested superior

F1 hybrids (%)

Ear weight 8.99 6.36–9.21 33 0.077 6.77–8.99 1 0.227

Grain yield 7.60 5.20–7.90 114 0.265 5.72–7.76 4 0.907

Kernels per row 33.16 25.18–34.75 524 1.217 26.96–34.25 8 1.814

Ear diameter 4.67 4.22–5.36 33,720 78.289 4.38–5.16 343 77.778

Ear length 17.25 13.56–19.17 6,815 15.823 14.33–18.55 76 17.234

Row number 16.40 13.03–19.62 9,649 22.403 13.43–18.54 101 22.902

Length of branch 35.06 26.96–40.11 13,699 31.806 28.32–39.29 143 32.426

Number of branches 16.27 9.18–21.73 12,019 27.905 10.12–20.55 136 30.839

Ear height 101.78 64.11–125.97 31,909 74.851 75.43–116.29 318 72.109

Plant height 220.33 185.01–271.08 7,055 16.549 201.64–262.86 72 16.327

a The superior F1 hybrids are the ones whose genotypic values are higher (or lower for plant height and ear height) than original F1 hybrid
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information used, the better and stable prediction model

performed. It is anticipated that the accuracy from

BV?GWP could be further improved when more epistatic

effects can be included in prediction. Statistical method

needs to be improved so as to catch epistatic effects in the

linear prediction model in GWP where the variables rep-

resenting epistasis greatly exceed the population size.

It was clearly shown that the best prediction model

depends on the genetic architecture of the trait in interest.

The information regarding which model is the best can be

helpful if the genetic architecture can be identified from

additional genetic data. Grain yield is of primary impor-

tance, but other traits such as grain moisture at harvest,

lodging resistance, grain quality are also important (Hal-

lauer et al. 2010). The use of multiple traits gave us the

chance to see that the best prediction model depends on the

genetic architecture of the trait in interest.

Applications of prediction in maize breeding

Maize breeding involves two critical steps, developing

superior inbred lines from breeding populations and iden-

tifying elite combinations of two inbred lines. In US,

inbred lines are commonly developed from F2 populations

made from elite 9 elite F1 hybrids of related lines within

heterotic groups (Hallauer et al. 2010). In developing

countries, like China, however, maize breeding is con-

ducted by many small public sectors. The heterotic groups

have not been clearly defined, and inbred lines are

commonly developed from the segregating populations

derived from commercial hybrids (Yu et al. 2007). For

example, ZD958 is an F1 hybrid released in 2000 in China.

The planting area reached 3.906 million ha in 2006 and is

currently the most widely grown in China. Zheng58, one

parental inbred line of ZD958, was derived from inbred

line 478 (Fig. 4). Inbred line 478 was developed from the

cross between inbred lines 8112 and 5003. Inbred lines

8112 and 5003 were selected from US commercial hybrids

Table 5 Theoretical genotypic values and predicted values of the ten possible genotypes in IF2 when the trait is controlled by two genes

Genotypes Theoretical value Predicted value

BVa ILPb GWPc BV ? GWPd

AABB aA þ aB þ aaAB
e aA þ aB þ 1

2
aaAB þ 1

2
adAB þ 1

2
daAB aA þ aB þ aaAB aA þ aB aA þ aB þ 1

2
aaAB þ 1

2
adAB þ 1

2
daAB

AABb aA þ dB þ adAB aA þ 1
2
adAB aA aA þ dB aA þ dB þ 1

2
adAB

AaBB dA þ aB þ daAB aB þ 1
2
daAB aB dA þ aB aB þ dA þ 1

2
daAB

AB/abf dA þ dB þ ddAB
1
2
aaAB aaAB dA þ dB dA þ dB þ 1

2
aaAB

AAbb aA � aB � aaAB aA � aB � 1
2
aaAB þ 1

2
adAB � 1

2
daAB aA � aB � aaAB aA � aB aA � aB � 1

2
aaAB þ 1

2
adAB � 1

2
daAB

Ab/aBg dA þ dB þ ddAB �1
2
aaAB �aaAB dA þ dB dA þ dB � 1

2
aaAB

Aabb dA � aB � daAB �aB � 1
2
daAB �aB dA � aB �aB þ dA � 1

2
daAB

aaBB �aA þ aB � aaAB �aA þ aB � 1
2
aaAB � 1

2
adAB þ 1

2
daAB �aA þ aB � aaAB �aA þ aB �aA þ aB � 1

2
aaAB � 1

2
adAB þ 1

2
daAB

aaBb �aA þ dB � adAB �aA � 1
2
adAB �aA �aA þ dB �aA þ dB � 1

2
adAB

aabb �aA � aB þ aaAB �aA � aB þ 1
2
aaAB � 1

2
adAB � 1

2
daAB �aA � aB þ aaAB �aA � aB �aA � aB þ 1

2
aaAB � 1

2
adAB � 1

2
daAB

a Prediction based on breeding value, and predicted value is the mean values of breeding values of its parents which is shown in Table S6B
b Prediction based on inbred line per se performance, and predicted value is the average of parental genotypic values which is shown in Table

S6B
c Genome-wide prediction
d Prediction based on breeding value and genome-wide estimation of marker dominance effect
e a and d are additive and dominance effects; aa, ad, da, dd are four types of epistatic effects
f AABB 9 aabb
g AAaa 9 aaBB

Fig. 4 Pedigree of the Chinese maize hybrid ZD958 (adapted from

Lai et al., 2010). The female parent of each cross is listed first.

Zheng58’s other parent is unknown and termed as ‘Inbred X’. The US

commercial hybrids are framed by dotted line
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3382 and 3147, respectively, in the 70s of the last century

(Teng et al. 2004; Lai et al. 2010). It should be noted that

inbred line 5003 has derived 24 elite F1 hybrids and at least

30 elite inbred lines. Inbred line 8112 has derived at least

53 elite hybrids and at least 20 elite inbred lines (Li and

Wang 2010). Therefore, commercial hybrids are the

important sources for selecting elite inbred lines in devel-

oping countries.

In practice, the prediction can be based on the pheno-

typic data routinely generated by breeding programs, but

the precision of prediction may be low. Genotype infor-

mation of an F1 can be deduced from its two inbred parents.

To include genotypic information in prediction, inbred

parental lines need to be genotyped first. In this study,

inbred line per se performance was also used to determine

the additive and dominance genetic effects of and QTL and

markers. We expect the use of inbred line per se data will

result in better estimations of these effects, which were

then used in predictions.

Based on results in this study, we recommend that the

genetic architecture of the trait of interest should be evalu-

ated first, including analysis of genetic variance, estimate of

heritability, combining ability analysis, QTL mapping, etc.

Then the appropriate prediction model can be determined by

the genetic architecture. If BV?GWP is chosen as the suit-

able model, genetic relationship between individuals as

covariance matrix in mixed model need to be calculated by

pedigree or molecular markers. After the genotypic values of

untested combinations are predicted, the next step is to select

the superior hybrids for field testing. In general, a superior

hybrid for one trait may not be superior for other traits. An

index by considering different breeding objectives may be

necessary to select the best hybrids with high grain yield and

satisfactory agronomic traits as well.
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