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Abstract

Epistasis is a commonly observed genetic phenomenon and an important source of variation of complex
traits, which could maintain additive variance and therefore assure the long-term genetic gain in breeding.
Inclusive composite interval mapping (ICIM) is able to identify epistatic quantitative trait loci (QTLs)
no matter whether the two interacting QTLs have any additive effects. In this article, we conducted a
simulation study to evaluate detection power and false discovery rate (FDR) of ICIM epistatic mapping,
by considering F2 and doubled haploid (DH) populations, different F2 segregation ratios and population
sizes. Results indicated that estimations of QTL locations and effects were unbiased, and the detection
power of epistatic mapping was largely affected by population size, heritability of epistasis, and the
amount and distribution of genetic effects. When the same likelihood of odd (LOD) threshold was used,
detection power of QTL was higher in F2 population than power in DH population; meanwhile FDR in
F2 was also higher than that in DH. The increase of marker density from 10 cM to 5 cM led to similar
detection power but higher FDR. In simulated populations, ICIM achieved better mapping results than
multiple interval mapping (MIM) in estimation of QTL positions and effect. At the end, we gave epistatic
mapping results of ICIM in one actual population in rice (Oryza sativa L.).
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Introduction

Epistasis refers to interaction between two or more non-allelic

genes. A number of experiments indicated the significant role

of epistasis and its importance for complex traits (Lark et al.

1995; Holland et al. 1997; Yu et al. 1997; Ohno et al. 2000;

Nagase et al. 2001; Boer et al. 2002; Luo et al. 2009). In

evolution and breeding, epistasis can also maintain the additive

variance, which may be the basis of long-term genetic gain

(Bernardo 2002; Janick 2004; Zhai and Wang 2007). However,

the principle of how interacting genes influenced the quanti-

tative traits largely remains unclear until now. It is generally

agreed that the identification and estimation of epistasis are

much more difficult and complicated, compared with additive

and dominance.

Inclusive Composite Interval Mapping (ICIM) is a critical

step forward that highlights the importance of model selection

and interval testing in quantitative trait loci (QTLs) linkage

mapping (Li et al. 2007; Zhang et al. 2008; Wang 2009). In

addition, ICIM can be readily extended to epistasis mapping

by simultaneously considering marker variables and marker-

pair multiplications in a linear model (Li et al. 2008). Two

steps of stepwise regression were adopted to identify the most

significant markers and marker-pair multiplications. Then a

two dimensional interval mapping was conducted to detect

epistatic QTL using the adjusted phenotypic values based
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on the best multiple regression models. Epistatic QTL can

be identified by ICIM, no matter whether the two interacting

QTLs have any additive effects. Li et al. (2010) investigated

the statistical properties of ICIM for additive mapping through

simulation. Results indicated that the increase in marker density

helps ICIM identify independent QTLs explaining more than 5%

of phenotypic variance. However, only large-size populations

can take advantage of densely distributed markers. When

population size is greater than 200, ICIM achieves unbiased

estimations of QTL position and effect. However, the property

of ICIM for epistatic mapping is still unclear.

Our objectives in this study were (i) to evaluate the efficiency

of ICIM epistatic mapping in F2 and DH populations through

computer simulation and an actual population, and (ii) to

evaluate the effects of population size on the detection power

of different types of epistasis represented by F2 segregation

ratios.

Results

QTL effects and genetic variance in F2 and DH
populations

Fourteen commonly observed F2 segregation ratios and their

genotypic values were shown in Table 1, and genetic effects of

QTL for the 14 F2 segregation ratios were calculated in Table 2.

Most ratios had non-zero additive and dominance effects

and epistatic effects except two segregation ratios. When the

segregation ratio was 9:3:3:1, the two QTLs had no epistatic

effects. When the segregation ratio was 10:6, QTLs had no

additive and dominance effects.

Table 1. Genotypic values for 14 segregation ratios commonly observed in F2 populations

Genotype and genotypic values

Segregation ratio in F2 AABB AABb AAbb AaBB AaBb Aabb aaBB aaBb aabb Segregation ratio in DH

9:3:3:1 3 3 2 3 3 2 1 1 0 1:1:1:1

9:3:4 2 2 1 2 2 1 0 0 0 1:1:2

12:1:3 2 2 2 2 2 2 0 0 1 2:1:1

3:9:4 1 1 2 1 1 2 0 0 0 1:1:2

12:3:1 2 2 2 2 2 2 1 1 0 2:1:1

9:7 1 1 0 1 1 0 0 0 0 1:3

3:13 0 0 1 0 0 1 0 0 0 3:1

9:4:3 2 2 1 2 2 1 0 0 1 1:2:1

9:1:6 2 2 0 2 2 0 0 0 1 1:2:1

10:3:3 2 2 1 2 2 1 0 0 2 2:1:1

15:1 1 1 1 1 1 1 1 1 0 3:1

3:12:1 1 1 2 1 1 2 1 1 0 2:1:1

10:6 1 1 0 1 1 0 0 0 1 1:1

6:9:1 1 1 2 1 1 2 2 2 0 1:2:1

The last column is the ratio in a DH population if the same genotypic values applied.

Total genetic variance was decomposed into additive, dom-

inance and epistatic variance components to demonstrate the

importance of epistasis in each segregation ratio (Table 3). The

proportion of additive, dominance and epistatic variance varied

significantly among the 14 ratios (Table 3). Taking segrega-

tion ratio 9:3:3:1 and F2 population for example, the genetic

variance (VG) was 0.94 including additive variance (VA) 0.63

and dominance variance (VD) 0.31. Epistatic variance was 0,

indicating epistasis had no contribution to the genetic variance

in the 9:3:3:1 ratio. For the 6:9:1 ratio, VG = 0.35, where VA =
0.02, VD = 0.01, and VI = 0.32, indicating epistasis had great

contribution to the genetic variance. The heritability of epistasis

was denoted as HI whose value was equal to VI /(VG + Vε),

where Vε is the random error. We assumed heritability of traits

was 0.6 in simulation, and then HI can be calculated (Table 3).

However, the same segregation ratio may lead to different

epistatic variance in F2 and DH populations (Table 3). The

largest HI of value 0.6 was in DH population for segregation

ratio 10:6.

Detection power of epistasis mapping in F2 and DH
populations

From the mapping results on simulated populations with marker

density 10 cM (Figure1A for F2; Figure1B for DH), it can

be seen that the detection power of epistasis mapping in-

creased with the increase in population size for both F2 and

DH populations. Most QTLs had high detection power when

population size was larger than 300. Taking segregation ratio

9:7 for example, detection powers of QTL in F2 population

were 59, 97 and 100% for population sizes 100, 200, and

300, respectively. Powers in DH population were 5, 30, 53,
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82 and 90% for population sizes 100, 200, 300, 400, and 500,

respectively.

For the same population size, QTLs with larger proportion

of epistatic variance had higher detection power. Taking pop-

ulation size 300 for example, HI were 0.05, 0.06 and 0.09

in F2 for segregation ratios 3:9:4, 12:3:1 and 9:7, and their

detection powers were 54, 59 and 100%, respectively; HI

were 0.2, 0.3 and 0.6 in DH for segregation ratio 15:1, 3:12:1

and 10:6, and their detection powers were 51, 74 and 100%,

respectively.

The amount and distribution of genetic effects may also have

an effect on the detection power, if the heritability is fixed.

Table 2. Genetic effects of two interacting quantitative trait loci (QTLs) for the 14 segregation ratios

Genetic effects of QTL

Segregation ratio in F2 Mean (m) a1 d1 a2 d2 aa ad da dd

9:3:3:1 1.5 1.00 1.00 0.50 0.50 0.00 0.00 0.00 0.00

9:3:4 0.75 0.75 0.75 0.25 0.25 0.25 0.25 0.25 0.25

12:1:3 1.25 0.75 0.75 −0.25 −0.25 0.25 0.25 0.25 0.25

3:9:4 0.75 0.75 0.75 −0.25 −0.25 −0.25 −0.25 −0.25 −0.25

12:3:1 1.25 0.75 0.75 0.25 0.25 −0.25 −0.25 −0.25 −0.25

9:7 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25

3:13 0.25 0.25 0.25 −0.25 −0.25 −0.25 −0.25 −0.25 −0.25

9:4:3 1.00 0.50 0.50 0.00 0.00 0.50 0.50 0.50 0.50

9:1:6 0.75 0.25 0.25 0.25 0.25 0.75 0.75 0.75 0.75

10:3:3 1.25 0.25 0.25 −0.25 −0.25 0.75 0.75 0.75 0.75

15:1 0.75 0.25 0.25 0.25 0.25 −0.25 −0.25 −0.25 −0.25

3:12:1 1.00 0.50 0.50 0.00 0.00 −0.50 −0.50 −0.50 −0.50

10:6 0.50 0.00 0.00 0.00 0.00 0.50 0.50 0.50 0.50

6:9:1 1.25 0.25 0.25 0.25 0.25 −0.75 −0.75 −0.75 −0.75

Table 3. Genetic variance components for the 14 segregation ratios

F2 DH

Segregation ratio in F2 VA VD VI VG
aVε

bHI VA VI VG Vε HI

9:3:3:1 0.63 0.31 0.00 0.94 0.63 0.00 1.25 0.00 1.25 0.83 0.00

9:3:4 0.45 0.23 0.04 0.72 0.48 0.03 0.63 0.06 0.69 0.46 0.05

12:1:3 0.39 0.20 0.04 0.63 0.41 0.03 0.63 0.06 0.69 0.46 0.05

3:9:4 0.27 0.13 0.04 0.44 0.29 0.05 0.63 0.06 0.69 0.46 0.05

12:3:1 0.20 0.10 0.04 0.34 0.23 0.06 0.63 0.06 0.69 0.46 0.05

9:7 0.14 0.07 0.04 0.25 0.16 0.09 0.13 0.06 0.19 0.13 0.20

3:13 0.08 0.04 0.04 0.16 0.10 0.14 0.13 0.06 0.19 0.13 0.20

9:4:3 0.31 0.16 0.14 0.61 0.41 0.14 0.25 0.25 0.50 0.33 0.30

9:1:6 0.39 0.20 0.32 0.91 0.60 0.21 0.13 0.56 0.69 0.46 0.49

10:3:3 0.20 0.10 0.32 0.62 0.41 0.31 0.13 0.56 0.69 0.46 0.49

15:1 0.02 0.01 0.04 0.07 0.04 0.36 0.13 0.06 0.19 0.13 0.20

3:12:1 0.06 0.03 0.14 0.23 0.16 0.36 0.25 0.25 0.50 0.33 0.30

10:6 0.06 0.03 0.14 0.23 0.16 0.36 0.00 0.25 0.25 0.17 0.60

6:9:1 0.02 0.01 0.32 0.35 0.23 0.56 0.13 0.56 0.69 0.46 0.49

a The heritability is assumed to be at 0.60. Vε is random error variance.
b HI is the heritability of epistasis, whose value is VI/ (VG+ Vε).

For example, HI was equal to 0.14 for ratios 3:13 and 9:4:3

in F2, but the corresponding powers were different especially

when population size was lower than 200. When population

size was 100, detection powers were 56 and 76% for ratios

3:13 and 9:4:3; when population size was 200, powers were

94 and 99%, respectively. The reason may be QTLs had

only dominance effects for ratio 9:4:3, while both additive and

dominance effects were present for ratio 3:13. Fewer effect

parameters may simplify the genetic model and result in more

precision in QTL mapping. Epistasis effects for segregation

ratio 9:4:3 were larger than those for ratio 3:13, resulting in

higher probability of QTL detection for ratio 9:4:3.
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Figure 1. Power to detect interacting quantitative trait loci (QTLs) in F2 and DH populations.

In conclusion, the detection power of interacting QTLs in

epistatic mapping depends on population size, heritability

of epistasis, and the amount and distribution of genetic ef-

fects. Compared with additive and dominance QTLs, epistatic

mapping requires larger populations, especially for QTLs with

smaller epistatic effects.

Estimated locations and genetic effects

To further understand the property of epistatic mapping, the

estimated locations and genetic effects of interacting QTLs for

population size 200 ares shown in Table 4 (for F2) and Table 5

(for DH). For QTLs with power 0, no locations and effects were

estimated, i.e. QTLs for segregation ratio 9:3:3:1, 9:3:4 and

12:1:3 in DH. For QTLs with small detection power, the esti-

mated locations and effects were biased. For example in the DH

population (Table 5), the power of QTLs was 2% for segregation

ratio 3:9:4. The estimated positions of two interacting were

20.00 and 52.50, corresponding to the true positions 25 and 55.

Estimated additive effects of two interacting QTLs and additive

by additive effect were 0.06, −0.32 and −0.63, corresponding

to the true effects 0.75, −0.25 and −0.25.

For QTLs whose detection power was not too small, the

estimated locations and effects were almost unbiased. For

example, in F2 population (Table 4), power of QTL was 96%

for ratio 3:13. The estimated positions of two interacting were

25.99 and 54.69, corresponding to the true positions 25 and

55. Estimated values of genetic effects a1, d1, a2, d2, aa, ad,

da and dd were 0.23, 0.22, −0.22, −0.19, −0.24, −0.25, −0.25

and −0.24, corresponding to the true effects 0.25, 0.25, −0.25,

−0.25, −0.25, −0.25, −0.25 and −0.25. Similar results were

observed in the DH population (Table 5).

False discovery rate of epistasis mapping in F2 and DH
populations

False discovery rate (FDR) of the simulation study was shown

in Figure2 (Figure2A for F2; Figure2B for DH). Generally speak-

ing, FDR decreased with the increase in population size. For

example, FDRs for segregation ratio 12:3:1 were 77.94, 52.38,

40.95, 34.21 and 28.13% for population sizes 100 to 500 in

F2; 83.33, 63.64, 33.33, 50 and 14.29% for population sizes

100 to 500 in DH, respectively. There were a few exceptions

in our simulation study. For example, false discovery rates for

segregation ratio 9:1:6 were 38.96, 32.89, 35.06, 27.54 and

40.83% for population sizes 100 to 500 in F2, which may be

caused by random errors in simulation.
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Table 4. Estimated positions and genetic effects of quantitative trait loci (QTLs) in 100 simulated F2 populations when population

size is 200

Segregation QTL1 QTL2

ratio in F2 Power (%) aLOD position position a1 d1 a2 d2 aa ad da dd

9:3:3:1 1 5.44 15.00 70.00 −0.06 −0.42 0.11 −0.39 −0.6 0.32 −0.08 0.75

(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

9:3:4 27 6.88 23.52 54.63 0.36 0.20 0.12 0.04 0.28 0.32 0.35 0.4

(1.54) (11.12) (10.18) (0.42) (0.40) (0.22) (0.32) (0.14) (0.25) (0.19) (0.42)

12:1:3 35 6.89 23.43 56.57 0.53 0.39 −0.31 −0.27 0.33 0.32 0.35 0.36

(1.59) (7.15) (8.76) (0.32) (0.34) (0.09) (0.21) (0.11) (0.19) (0.17) (0.32)

3:9:4 17 6.78 27.35 57.06 0.56 0.52 −0.04 −0.11 −0.33 −0.29 −0.28 −0.29

(1.31) (8.07) (12.61) (0.25) (0.41) (0.21) (0.19) (0.10) (0.21) (0.19) (0.31)

12:3:1 30 7.31 28.00 53.50 0.59 0.62 0.25 0.35 −0.28 −0.3 −0.29 −0.5

(1.59) (10.69) (8.86) (0.26) (0.28) (0.13) (0.21) (0.10) (0.18) (0.23) (0.32)

9:7 97 14.09 24.64 54.69 0.21 0.15 0.23 0.19 0.25 0.26 0.26 0.25

(3.27) (4.20) (3.65) (0.11) (0.14) (0.09) (0.15) (0.06) (0.10) (0.10) (0.14)

3:13 96 14.31 25.99 54.69 0.23 0.22 −0.22 −0.19 −0.24 −0.25 −0.25 −0.24

(3.42) (6.44) (4.13) (0.06) (0.09) (0.11) (0.15) (0.07) (0.09) (0.10) (0.13)

9:4:3 99 18.94 24.80 55.81 0.47 0.39 −0.04 −0.07 0.48 0.48 0.51 0.51

(4.35) (3.69) (4.91) (0.18) (0.26) (0.12) (0.15) (0.09) (0.14) (0.15) (0.20)

9:1:6 100 26.89 25.00 54.95 0.20 0.17 0.23 0.17 0.72 0.74 0.73 0.72

(5.54) (2.83) (2.96) (0.17) (0.26) (0.15) (0.24) (0.12) (0.15) (0.16) (0.22)

10:3:3 100 27.08 25.00 55.05 0.22 0.19 −0.25 −0.25 0.73 0.74 0.72 0.73

(5.51) (2.65) (3.12) (0.17) (0.24) (0.12) (0.14) (0.11) (0.17) (0.18) (0.20)

15:1 96 14.84 25.47 55.47 0.22 0.23 0.23 0.23 −0.25 −0.23 −0.25 −0.26

(3.64) (5.95) (6.81) (0.08) (0.09) (0.08) (0.09) (0.07) (0.1 (0.09 (0.14

3:12:1 100 19.70 25.85 55.50 0.451 0.47 0.03 0.04 −0.49 −0.5 −0.5 −0.51

(4.19) (5.57) (3.04) (0.12) (0.15) (0.12) (0.14) (0.10) (0.16) (0.12) (0.21)

10:6 100 30.72 25.20 54.70 −0.03 −0.03 −0.02 −0.04 0.47 0.47 0.48 0.49

(6.13) (1.86) (3.73) (0.11) (0.12) (0.11) (0.12) (0.07) (0.11) (0.09) (0.14)

6:9:1 100 28.01 24.90 55.05 0.26 0.22 0.23 0.27 −0.73 −0.74 −0.7 −0.74

(5.18) (2.83) (2.18) (0.12) (0.14) (0.11) (0.16) (0.11) (0.18) (0.15) (0.23)

a The value in the brackets is SD.

It can be seen from Figures 1 and 2 that detection power of

QTL was higher in the F2 population than the power in the DH

population; meanwhile, FDR in F2 was also higher than FDR

in DH. Taking segregation ratio 15:1 as an example, detection

powers were 58, 95, 100, 100, and 100% in F2 for population

sizes 100 to 500; powers were 6, 26, 51, 72 and 85% in DH.

The corresponding FDR were 64.41, 44.51, 42.53, 32.43 and

35.90% in F2, and 66.67, 10.34, 5.56, 1.37 and 2.30% in DH.

The reason may be that QTLs in F2 have more parameters

of genetic effects than DH, which lead to higher LOD score

for the same segregation ratio. Then if we used the same

LOD threshold for F2 and DH, the peaks may be regarded

as significant QTLs more easily in F2 than DH. This may cause

two possible results. One is that true QTLs are detected, which

increases the detection power; the other is that false positive

occurs, which increases FDR.

Comparison of ICIM with multiple interval mapping
using simulated populations

For the first simulated DH population for each ratio, interacting

QTLs were detected by ICIM in eight of the 14 ratios, while inter-

acting QTLs were detected by MIM in only two ratios (Table 6).

The estimated positions of multiple interval mapping (MIM)

were more biased than ICIM. Taking segregation ratio 15:1

for example, the positions of interacting QTLs from ICIM were

at 25 cM on chromosome 1 and 55 on chromosome 2, which

were the same as the true positions. Meanwhile, the positions

of interacting QTLs from MIM were at 30 cM on chromosome

1 and 50 on chromosome 2. The estimated effects of both

ICIM and MIM were close to true values. In addition, MIM

could detect interacting QTLs, which also had main effects,

but ICIM could also detect interacting QTLs, which only had

epistatic effects. For example, QTLs in segregation ratio 10:6
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Table 5. Estimated positions and genetic effects of quantitative trait loci (QTLs) in 100 simulated DH populations when population

size is 200

Segregation ratio in F2 Power (%) aLOD QTL1 position QTL2 position a1 a2 aa

9:3:3:1 0

9:3:4 0

12:1:3 0

3:9:4 2 6.87 20.00 52.50 0.06 −0.32 −0.63

(0.50) (10.00) (2.50) (0.02) (0.06) (0.03)

12:3:1 4 5.69 20.00 53.75 0.33 0.17 −0.59

(0.41) (9.35) (4.15) (0.33) (0.09) (0.02)

9:7 30 6.88 24.17 56.67 0.16 0.14 0.35

(1.58) (7.20) (8.88) (0.10) (0.15) (0.04)

3:13 14 6.41 23.57 56.43 0.16 −0.13 −0.34

(1.46) (11.09) (6.66) (0.11) (0.14) (0.03)

9:4:3 56 7.21 24.02 55.63 0.37 −0.01 0.60

(1.74) (7.03) (7.74) (0.19) (0.08) (0.07)

9:1:6 90 7.94 25.11 54.61 0.21 0.20 0.76

(2.03) (5.87) (5.39) (0.14) (0.15) (0.11)

10:3:3 84 8.05 24.64 55.00 0.23 −0.20 0.77

(2.16) (5.16) (5.29) (0.14) (0.14) (0.11)

15:1 26 6.76 24.62 55.19 0.17 0.18 −0.34

(2.09) (7.46) (11.89) (0.12) (0.11) (0.05)

3:12:1 46 6.88 25.87 53.26 0.38 0.00 −0.59

(1.58) (6.94) (5.83) (0.24) (0.10) (0.08)

10:6 91 8.69 23.74 54.40 0.00 −0.01 0.49

(2.51) (5.06) (4.05) (0.06) (0.08) (0.08)

6:9:1 90 8.06 24.17 55.28 0.19 0.19 −0.76

(2.15) (6.72) (5.18) (0.14) (0.12) (0.11)

a The values in the brackets stand for the SD.

could only be detected by ICIM because they had no main

effects (Table 6). Obviously, the detection power of ICIM was

higher than MIM, and the estimated positions of MIM were more

biased than ICIM. And ICIM can detect more kinds of interacting

QTL than MIM, especially for QTLs that only have epistatic

effects.

Mapping results for the actual populations

Inclusive composite interval mapping detected five pairs of

epistatic QTLs affecting grain length for the rice recombinant

inbred line (RIL) population (Figure 3). The interacting QTL at

145 cM on chromosome 1 and 20 cM on chromosome 5 were

detected in all three environments with LOD scores 6.39, 6.98

and 9.32, respectively. Two other pairs of interacting QTLs

were identified only in environment GLHN2003. One was at

125 cM on chromosome 1 and 90 cM on chromosome 11.

The other was at 80 cM on chromosome 4 and 80 cM on

chromosome 11.

Discussion

More and more epistasis has been recognized in QTL mapping

nowadays. Using DH as an example, genotypic means for

QTL genotypes AABB, AAbb, aaBB and aabb were denoted

as μAABB, μAAbb, μaaBB and μaabb. Then μAABB = m + a1 +
a2 + aa, μAAbb = m + a1 − a2 − aa, μaaBB = m − a1 + a2 − aa,

μaabb = m − a1 − a2 + aa, where m was the mean of QTL

genotypic values; a1, a2 were additive effects of interacting

QTL; aa was epistatic effects. Let m = 0, a1 = 1, a2 = 2, and

aa = −1.5, we have μAABB = 1.5, μAAbb = 0.5, μaaBB = 2.5,

and μaabb = −1.5. If episatsis is ignored, we have μAABB = 3,

μAAbb = −1, μaaBB = 1, and μaabb = −3. Assuming additive

effect can be unbiased estimated from 1D mapping, and the

epistatsis is ignored, then the genotype with highest value will

be μAABB = 3. But actually, the best genotype should be aaBB.

So the best genotype cannot be corrected picked up by 1D

mapping, if epistasis exists. We also have such examples in

the 14 segregation ratios. For example, μAABB = 1, μAAbb = 0,
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Figure 2. False discovery rates in detecting interacting quantitative trait loci (QTLs) in F2 population and DH populations.

μaaBB = 0, and μaabb = 1 in DH for segregation ratio 10:6; and

a1 = 0, a2 = 0, aa = 0.50, and m = 0.50. Then the genotypes

with highest values were AABB and aabb. If the epistasis is

ignored, μAABB, μAAbb, μaaBB and μaabb were all equal to 0.50,

and the genotypes having highest values cannot be properly

determined.

Table 6. Digenic epistatic quantitative trait loci (QTLs) identified by inclusive composite interval mapping (ICIM) and multiple

interval mapping (MIM) in the first simulated population of DH

QTL1 QTL2

Method Segregation ratio Chr. Pos. Chr. Pos. LOD PVE (%) a1 a2 aa

ICIM 9:7 1 25 2 55 6.19 9.58 0.3 0.05 0.32

9:4:3 1 25 2 55 6.15 10.16 0.47 −0.11 0.48

9:1:6 1 25 2 55 9.89 17.68 0.29 0.31 0.79

10:3:3 1 20 2 60 8.58 11.78 0.17 −0.35 0.64

15:1 1 25 2 55 7.25 10.68 0.17 0.24 −0.34

3:12:1 1 25 2 55 8.21 11.28 0.53 0.07 −0.54

10:6 1 30 2 50 10.03 14.25 −0.01 −0.02 0.42

6:9:1 1 25 2 60 7.91 11.95 0.19 0.27 −0.62

MIM 3:13 1 30 2 50 2.69 3.7 0.20 −0.25 −0.18

15:1 1 30 2 50 4.56 6.6 0.21 0.24 −0.25

LOD, likelihood of odd; PVE, phenotypic variance explained.

However, the detection of epistasis is more difficult and

complex, compared with the detection of additive (and domi-

nance) QTL. When epistatic effects are considered, the genetic

model contains much more parameters compared with additive

mapping. Therefore, it is more difficult to identify epistatic QTL

and estimate the epistatic effects (Li et al. 2008). Simulation
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results in this study indicated that ICIM is an efficient statistical

method for epistatic mapping, which has a relatively high

detection power and higher precision than MIM. Estimations

of QTL locations and effects from ICIM were unbiased, and

the detection power was largely affected by population size,

heritability of epistasis, and the amount and distribution of

genetic effects. Two interacting QTLs had a high detection

power if the heritability of epistasis was high and the population

size was large enough.

Stepwise regression in ICIM was applied to identify the most

significant markers and marker−pair multiplications (Li et al.

2008). Assume there were m markers in the genome, which

consisted of c chromosomes. For DH, RIL and so on, which

had only two marker types at each locus, there were two steps

of regression. One regression was for marker variables, which

had m variables, and the other was for marker−pair multi-

plications, which had m(m−1)/2 variables. When the number

of markers was large, the difficulty of variable selection was

obvious. However, for F2, F3 and so on, which had three marker

types in each locus, it was proved that the dominance effect

of QTL could cause the interaction between markers. So the

number of variables for fixing additive and dominance effects of

QTL was 4m−2c (Zhang et al. 2008). The number of variables

for fixing additive, dominance and four kinds of epistatic effects

was about 8m2 − 26m + 25. For example, when there were 120

markers, the regression model for epistatic mapping needed

to consider about 112 105 variables at the same time. This

exceeded the ability of most regression methods and might be

solved by a method of reduction of dimension.

For simplicity, we used one step of regression, which was for

marker variables in F2, F3 and so on, which controlled the

main effects outside the scanning interval. This might lead

to biased estimation of QTL positions and effects. But the

two-dimensional scanning in ICIM could modify the bias to a

great extent. In the future, we will consider the improvement

of epistatic mapping in F2 population, which can control both

main effects and epistatic effects of background QTL at the

same time. This will improve the detection power and accuracy

of epistatic mapping in F2.

We simulated populations with marker density 5 cM. From

the power analysis, the increase of marker density 10 cM to 5

cM led to similar powers and higher FDR in QTL detection. This

is because of the complex genetic model of epistatic mapping.

When marker density was 5 cM, there were more variables

in the regression model than marker density 10 cM. As we

know, the regression model for epistatic mapping is much

more complex than additive mapping owing to the marker-

pair multiplications. Too many variables in the model will add

the difficulty of fixing the model accurately. So for marker

density 5 cM, the model may not be accurate, which leads to

similar power and higher FDR compared with marker density

10 cM.

Figure 3. Chromosomal positions of epistatic quantitative trait

loci (QTLs) affecting grain length in the rice recombinant inbred

line (RIL) population.

One pair of QTLs was detected in all three environments. Its

estimated epistatic effects were 0.29, 0.29 and 0.25 in the three

environments, respectively.
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Material and Methods

Segregation ratios in simulation

Assuming there are two independent loci (i.e. no linkage),

represented by A-a and B-b, allele A is dominant to allele a,

and allele B is dominant to allele b. When there is no interaction

between the two loci, there will be four phenotypic classes

having the segregation ratio 9:3:3:1 in an F2 population derived

from two homozygous parents AABB and aabb. When there

are some interactions between the two loci, fewer phenotypic

classes will be observed. In addition to ratio 9:3:3:1, other

13 commonly observed ratios in F2 population considered in

this study (Bernardo 2002; Janick 2004; Zhai and Wang 2007)

were shown in Table 1, including the corresponding segregation

ratios in DH population.

Quantitative trait loci in F2 had two kinds of main effects,

i.e. additive and dominance effect, and four kinds of epistatic

effects, i.e. additive by additive, additive by dominance, domi-

nance by additive and dominance by dominance effects. QTLs

in DH had only additive effects and additive by additive effects.

In the F2 population, the relationship between genotypic value

and genetic effects of QTL was as follows (Falconer and

Mackay 1996),⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

μAABB

μAABb

μAAbb

μAaBB

μAaBb

μAabb

μaaBB

μaaBb

μaabb

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 0 1 0 1 0 0 0

1 1 0 0 1 0 1 0 0

1 1 0 −1 0 −1 0 0 0

1 0 1 1 0 0 0 1 0

1 0 1 0 1 0 0 0 1

1 0 1 −1 0 0 0 −1 0

1 −1 0 1 0 −1 0 0 0

1 −1 0 0 1 0 −1 0 0

1 −1 0 −1 0 1 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

m
a1

d1

a2

d2

aa
ad
da
dd

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

where μAABB, μAABb, μAAbb, μAaBB, μAaBb, μAabb, μaaBB, μaaBb

and μaabb were genotypic means for QTL genotypes AABB,

AABb, AAbb, AaBB, AaBb, Aabb, aaBB, aaBb, and aabb; m

was the mean of QTL genotypic values; a1, a2 were additive

effects of interacting QTL; d1, d2 were dominance effects of

interacting QTL; aa, ad, da, dd were four epistatic effects,

i.e. additive by additive, additive by dominance, dominance by

additive and dominance by dominance effects. By resolving

the above linear equations, genetic effects of QTL can be

calculated as:⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

m
a1

d1

a2

d2

aa
ad
da
dd

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0.25 0 0.25 0 0 0 0.25 0 0.25

0.25 0 0.25 0 0 0 −0.25 0 −0.25

−0.25 0 −0.25 0.5 0 0.5 −0.25 0 −0.25

0.25 0 −0.25 0 0 0 0.25 0 −0.25

−0.25 0.5 −0.25 0 0 0 −0.25 0.5 −0.25

0.25 0 −0.25 0 0 0 −0.25 0 0.25

−0.25 0.5 −0.25 0 0 0 0.25 −0.5 0.25

−0.25 0 0.25 0.5 0 −0.5 −0.25 0 0.25

0.25 −0.5 0.25 −0.5 1 −0.5 0.25 −0.5 0.25

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

μAABB

μAABb

μAAbb

μAaBB

μAaBb

μAabb

μaaBB

μaaBb

μaabb

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

QTL position and marker density in simulation

We assume a genome consisting of four chromosomes; each

chromosome is of 140 cM, evenly distributed with 15 codom-

inant markers. In other words, the marker density is 10 cM

in this genome. The two interacting QTLs were located at

25 cM on chromosome 1 and 55 cM on chromosome 2. Each

trait was assumed to fit one of the 14 F2 segregation ratios in

simulation. The heritability was set at 0.6 for all traits (or equally

all segregation ratios).

Size of F2 and DH populations in simulation

Five levels of population sizes, i.e. 100, 200, 300, 400 and

500 were simulated for each population type and segregation

ratios. Using the genetic models above, the populations were

generated by QuLine (Wang et al. 2003, 2004). Thus, there

were a total of 10 simulation scenarios (i.e. two population

types by five population sizes). QTL mapping of epistatic QTLs

was conducted by the software QTL IciMapping using ICIM.

The threshold LOD score was set at 5.0 for F2 and DH. The

two probabilities for entering and removing variables were set

at 0.001 and 0.002. And the length of support interval was

60 cM.

Power calculation and position and effect estimation

One hundred F2 and DH populations were generated for

each simulation scenario. In each simulated population, QTL

epistatic mapping was conducted for the 14 segregation ratios.

Epistatic mapping is not a point estimation, including estima-

tions for positions of two interacting QTLs. Each predefined

QTL was assigned to a support interval of given length centered

at the true QTL location. The power for the two support intervals

was estimated at the same time. For one simulation, if each of

the two interacting QTLs was detected in the corresponding

support interval, the power of QTL detection was added by

one. QTLs identified in other intervals were viewed as false

positives. If pairs of multiple peaks occurred in the two sup-

port intervals, only the highest one was counted. Mean QTL

positions and effects were estimated according to the peaks in

the support intervals whose LOD scores were higher than the

given LOD threshold.
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Estimation of FDR

In simulation studies, the FDR was defined as the proportion

of false positives to the total number of significant discoveries

(i.e. true positives plus false positives, Benjamini and Hochberg

1995). An efficient mapping method should not only have high

detection power, but also have low FDR. So both powers

and FDR have to be considered for evaluating the efficiency

of QTL mapping methods. Owing to the complex genetic

model in epistatic mapping, FDR might be higher than additive

mapping.

Comparison of ICIM with MIM using simulated
populations

To demonstrate the efficiency of ICIM in epistatic mapping

compared with other methods, we applied both ICIM and MIM

(Kao et al. 1999) on the first simulated DH population for each

ratio, so as to compare the mapping results of both mapping

methods. The parameters in ICIM were the same as used in

simulations, and the parameters in MIM were used as default.

One actual RIL population in rice

We used one rice (Oryza sativa L.) RIL population for ICIM

epistatic mapping. The population consisted of 71 individuals

and grain length was investigated in three different environ-

ments (denoted as GLNJ2002, GLJH2002 and GLHN2003).

A total of 250 relatively evenly distributed markers covered a

whole genome of 1301.8 cM on the 12 rice chromosomes, and

the average marker distance was 5.2 cM. The same mapping

parameters were used as for the simulated populations.
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