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Abstract Mathematically-derived traits from two

or more component traits, either by addition, sub-

traction, multiplication, or division, have been fre-

quently used in genetics and breeding. When used in

quantitative trait locus (QTL) mapping, derived traits

sometimes show discrepancy with QTL identified for

the component traits. We used three QTL distribu-

tions and three genetic effects models, and an actual

maize mapping population, to investigate the effi-

ciency of using derived traits in QTL mapping, and to

understand the genetic and biological basis of

derived-only QTL, i.e., QTL identified for a derived

trait but not for any component trait. Results

indicated that the detection power of the four putative

QTL was consistently greater than 90% for compo-

nent traits in simulated populations, each consisting

of 200 recombinant inbred lines. Lower detection

power and higher false discovery rate (FDR) were

observed when derived traits were used. In an actual

maize population, simulations were designed based

on the observed QTL distributions and effects. When

derived traits were used, QTL detected for both

component and derived traits had comparable power,

but those detected for component traits but not for

derived traits had low detection power. The FDR

from subtraction and division in the maize population

were higher than the FDR from addition and multi-

plication. The use of derived traits increased the gene

number, caused higher-order gene interactions than

observed in component traits, and possibly compli-

cated the linkage relationship between QTL as well.

The increased complexity of the genetic architecture

with derived traits may be responsible for the reduced

detection power and the increased FDR. Derived-

only QTL identified in practical genetic populations

can be explained either as minor QTL that are not

significant in QTL mapping of component traits, or as

false positives.

Keywords Derived trait � Component trait � QTL

mapping � Power analysis

Introduction

In the past two decades, QTL (quantitative trait locus/

loci) mapping has been widely used in the genetic
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study of quantitative traits. As a result, many QTL of

various phenotypic traits in a wide range of species

have been reported. In some QTL mapping studies,

the phenotype of a trait of interest is mathematically

derived from other quantitative traits, either by

addition, subtraction, multiplication, or division. For

convenience, traits having their own measurements

and used directly in QTL mapping are called

component traits or simply components throughout

this study; those mathematically-derived from two or

more component traits and then used in QTL

mapping are called derived traits.

Derived traits are often used in genetics and

breeding. In maize, the anthesis-silking interval (ASI)

is an important agronomic trait related to grain yield,

drought tolerance, and evolution (Bolanos and

Edmeades 1996; Ribaut et al. 1996; Sari-Gorla et al.

1999; Buckler et al. 2009; Messmer et al. 2009). The

phenotypic value of the ASI of a single maize plant is

defined as the difference between male (MFLW) and

female flowering time (FFLW). Since direct selection

for drought tolerance per se is difficult in maize, ASI

has been identified as an efficient indicator and is

often used for selecting drought tolerant lines (Sari-

Gorla et al. 1999; Ribaut and Ragot 2007). Ribaut

et al. (1996) used 142 molecular markers to identify

the genomic segments responsible for the expression

of ASI in an F2 population of 234 individuals, with the

aim of developing marker-assisted selection strategies

for drought tolerance (Ribaut et al. 1997; Ribaut and

Ragot 2007). Mapping results showed that four QTL

were common for MFLW and FFLW, one for ASI and

MFLW, and four for ASI and FFLW. Two ASI-only

QTL were identified, one on chromosome 2 (identi-

fied under well-watered conditions) that explained

11.4% of the phenotypic variance, and one on

chromosome 6 (identified under severe stress condi-

tions) that explained 13.0% of the phenotypic vari-

ance. Neither QTL was found for MFLW or FFLW. In

a population of 142 recombinant inbred lines (RILs)

and 153 markers, Sari-Gorla et al. (1999) identified

five MFLW QTL, no FFLW QTL, and seven ASI

QTL in well-watered environments. The ASI QTL

identified on maize chromosome 9 was not identified

for MFLW or FFLW. In water-stressed environments,

four MFLW QTL, two FFLW QTL, and two ASI QTL

were identified. The ASI QTL identified on maize

chromosome 5 was not identified for MFLW or

FFLW.

In rice, grain shape (GS) is an important grain

quality trait defined as the ratio of grain length (GL)

to grain width (GW) (Redona and Mackill 1998; Tan

et al. 2000; Li et al. 2004; Rabiei et al. 2004; Aluko

et al. 2004; Wan et al. 2005). In an F2 population of

204 individuals and 116 molecular markers, Redona

and Mackill (1998) identified seven QTL for GL,

four for GW, and three for GS. The three GS QTL

were controlled mostly by loci on chromosomes 3

and 7 that coincided with QTL for GL and GW. In

the F2:3 and RIL populations derived from an elite

hybrid rice cultivar, Tan et al. (2000) found that

major QTL for GL, GW, and GS were detected in

both populations using paddy rice and brown rice,

whereas minor QTL were detected only occasion-

ally. In a rice BC3F1 population of 308 families, Li

et al. (2004) identified two QTL for GL located on

chromosomes 3 and 10, and one QTL for GW

located on chromosome 12. Two QTL for GS were

identified at similar chromosomal positions as the

two GL QTL. In an F2 population of 192 individ-

uals, Rabiei et al. (2004) identified a total of 18

QTL, five for GL, seven for GW, and six for GS.

Among the 18 QTL, there was one major QTL

specific for GS, i.e., not detected either for GL or for

GW, explaining 15% of the phenotypic variance in

GS.

As indicated above, QTL mapping of derived

traits sometimes shows discrepancy with QTL map-

ping of their components (for examples see Ribaut

et al. 1996; Sari-Gorla et al. 1999; Rabiei et al. 2004;

Tan et al. 2000; Wan et al. 2005). Derived-only

QTL, i.e., QTL detected for derived traits but not for

any component trait, have occasionally been

reported. Where did the derived-only QTL come

from? To what extent can we trust the derived-only

QTL and use this information in breeding or other

genetic studies such as QTL fine-mapping, gene

cloning and marker-assisted selection? In this study,

we first derived some theoretical formulas for

calculating QTL effects and the genetic variance of

four derived traits from two components, i.e.,

addition, subtraction, multiplication, and division.

We then used three QTL distribution and three

genetic effect models, and an actual maize mapping

population, to investigate the efficiency of using

derived traits in QTL mapping, and to illustrate the

complexity that arises when using derived traits in

QTL mapping.
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Materials and methods

Theoretical genetic effects and genetic variance

of derived traits

To demonstrate the theoretical genetic effects and the

genetic variance of derived traits, we considered a

four-QTL model where Q1 and Q2 affect component

I, and Q3 and Q4 affect component II. Their additive

effects on the two component traits are represented

by a1, a2, a3 and a4, respectively. No interaction

between Q1 and Q2 or between Q3 and Q4 was

considered. The mean value is m1 for component I,

and m2 for component II. Assuming that the mapping

population consists of a set of RILs derived from a

biparental cross, component traits in the mapping

population can be classified into 16 groups based on

their genotypes at the four QTL (Electronic Supple-

mentary Material Table S1). Under the additivity

assumption of QTL effects, genotypic values of the

two component traits are shown in Table S1.

Genotypic values of the four derived traits—addition,

subtraction, multiplication, and division—were cal-

culated from the genotypic values of the two

component traits (Table S1).

On the other hand, one overall mean (denoted by

M) and 15 genetic effects can be calculated from the

16 genotypic values given, based on Eq. 1, where the

16 genotypic values are represented by G1 to G16,

respectively; Ai (i = 1, 2, 3 and 4) denotes the

additive effects of the four QTL; Aij denotes the

additive by additive epistatic effects of two QTL

(i, j = 1, 2, 3 and 4, and i = j); Aijk denotes the

additive by additive by additive epistatic effects of

three QTL (i, j, k = 1, 2, 3 and 4, and i = j=k); and

A1234 denotes the epistatic effects of the four

QTL.The theoretical genetic effects of the two

component traits and four derived traits can therefore

be calculated (Table S2). As expected, for component

I, M = m1, A1 = a1, A2 = a2, and other genetic

effects were 0. For component II, M = m2, A3 = a3,

A4 = a4, and other genetic effects were 0. For

addition, M = m1 ?

m2, A1 = a1, A2 = a2, A3 = a3, A4 = a4, and other

genetic effects were 0. For subtraction, M = m1-m2,

A1 = a1, A2 = a2, A3 = -a3, A4 = -a4, and other

genetic effects were 0 (Table S2). Interestingly, there

were epistatic effects of two QTL interactions for

multiplication, and epistatic effects of two and three

QTL interactions for division (Table S2).

G1

G2

G3

G4

G5

G6

G7

G8

G9

G10

G11

G12

G13

G14

G15

G16

2
66666666666666666666666666666666664

3
77777777777777777777777777777777775

¼

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 �1 1 1 �1 1 �1 �1 1 �1 �1 �1 �1

1 1 1 �1 1 1 �1 1 �1 1 �1 �1 1 �1 �1 �1

1 1 1 �1 �1 1 �1 �1 �1 �1 1 �1 �1 1 1 1

1 1 �1 1 1 �1 1 1 �1 �1 1 �1 �1 1 �1 �1

1 1 �1 1 �1 �1 1 �1 �1 1 �1 �1 1 �1 1 1

1 1 �1 �1 1 �1 �1 1 1 �1 �1 1 �1 �1 1 1

1 1 �1 �1 �1 �1 �1 �1 1 1 1 1 1 1 �1 �1

1 �1 1 1 1 �1 �1 �1 1 1 1 �1 �1 �1 1 �1

1 �1 1 1 �1 �1 �1 1 1 �1 �1 �1 1 1 �1 1

1 �1 1 �1 1 �1 1 �1 �1 1 �1 1 �1 1 �1 1

1 �1 1 �1 �1 �1 1 1 �1 �1 1 1 1 �1 1 �1

1 �1 �1 1 1 1 �1 �1 �1 �1 1 1 1 �1 �1 1

1 �1 �1 1 �1 1 �1 1 �1 1 �1 1 �1 1 1 �1

1 �1 �1 �1 1 1 1 �1 1 �1 �1 �1 1 1 1 �1

1 �1 �1 �1 �1 1 1 1 1 1 1 �1 �1 �1 �1 1

2
666666666666666666666666664

3
777777777777777777777777775

�

M

A1

A2

A3

A4

A12

A13
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A23

A24

A34
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2
66666666666666666666666666666666664

3
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Assuming there is no epistasis, the genetic vari-

ance of a quantitative trait in a RIL population is (Li

et al. 2008):

VG ¼
Xq

i;j¼1

ð1� 2RijÞaiaj

¼
Xq

i¼1

a2
i þ

Xq

j\k

2ð1� 2RjkÞajak; ð2Þ

where q is the number of QTL affecting the trait; ai

and aj are the additive effects of the ith and jth QTL,

respectively; Rij is the recombination frequency

between the ith and jth QTL in the RIL population;

and the relationship between R and the one-meiosis

recombination frequency r is R ¼ 2r
1þ2r, if self-polli-

nation was repeatedly used.

Genetic models in simulation

Assume there are ten chromosomes in a genome,

each 150 cM in length and with 16 evenly distributed

markers. Three distribution models of QTL location,

i.e., Distributions A to C, were considered in

simulation, each consisting of four QTL (denoted as

Q1 and q1–Q4 and q4 or simply Q1–Q4; Table 1). Q1

and Q2 affect component I, and Q3 and Q4 affect

component II. In Distribution A, the four QTL were

located on chromosomes 1–4, and their chromosomal

positions were at 18, 28, 53, and 63 cM, respectively.

A linkage of 35 cM was considered in Distributions

B and C on the first two chromosomes. In Distribu-

tion B, Q1 and Q2 were linked on chromosome 1, and

Q3 and Q4 were linked on chromosome 2. In

Distribution C, Q1 and Q3 were linked on chromo-

some 1, while Q2 and Q4 were linked on chromosome

2 (Table 1).

For each distribution model, three genetic effect

models were simulated (Table 2), i.e., Effect A: the

pure additive model, where component QTL only

have additive effects; Effect B: the additive and

epistasis model, where component QTL have both

additive and epistatic effects; and Effect C: the pure

epistasis model, where component QTL have epi-

static effects but do not have additive effects. In

Effect A, the additive effects of the four QTL were all

set at 1.0. No epistatic effect was assumed between

Q1 and Q2 or between Q3 and Q4. In Effect B, the

additive effects of the four QTL, and the additive by

additive epistatic effects between Q1 and Q2, and Q3

and Q4, were all set at 1.0. In Effect C, the additive by

additive epistatic effects between Q1 and Q2, and Q3

and Q4, were both set at 1.0. None of the four QTL

was assumed to have additive effects. The mean

value was set at 25 for trait I, and at 20 for trait II, for

the three effect models.

According to the theoretical formulas in the

previous section, genetic variances for component

traits I and II and derived traits addition and

subtraction can be easily calculated for Effect A

(Tables 2 and S2). For multiplication and division,

the genetic architecture becomes very complicated, as

additive by additive epistatic effects and even three-

dimensional epistatic effects for division have to be

considered simultaneously. Formulas for the genetic

variances of derived traits multiplication and division

are not given in Table S2. Genetic effects of the four

QTL and the genetic variance under Effect A and

Distributions A–C are given in Table S3 for compo-

nent and derived traits. By definition, broad-sense

Table 1 Three distribution models for four QTL locations in

the simulation study

QTL Trait

affected

Distribution

A

Distribution

B

Distribution

C

Chr. Pos.

(cM)

Chr. Pos.

(cM)

Chr. Pos.

(cM)

Q1 Component I 1 18.0 1 18.0 1 18.0

Q2 Component I 2 28.0 1 53.0 2 28.0

Q3 Component II 3 53.0 2 28.0 1 53.0

Q4 Component II 4 63.0 2 63.0 2 63.0

Chr chromosome, Pos position

Table 2 Three genetic effect models in the simulation study

Genetic parameter Effect A Effect B Effect C

Additive effect of Q1

on component I (a1)

1.0 1.0 0.0

Additive effect of Q2

on component I (a2)

1.0 1.0 0.0

Additive effect of Q3

on component II (a3)

1.0 1.0 0.0

Additive effect of Q4

on component II (a4)

1.0 1.0 0.0

Additive by additive effect

between Q1 and Q2 (aa12)

0.0 1.0 1.0

Additive by additive effect

between Q3 and Q4 (aa34)

0.0 1.0 1.0
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heritability (H) is the total genetic variance (VG)

divided by the total phenotypic variance (VP), i.e.,

H ¼ VG

VP
¼ VG

VG þ Ve
: ð3Þ

In simulation, VG was calculated from the predefined

QTL effect for each of Distributions A–C, and the

error variance (Ve) was fixed at 4.67 for the two

component traits. Thus for traits I and II under Effect

A, the theoretical H was 0.30 in Distributions A and

C, and 0.39 in Distribution B due to the increased

genetic variance caused by the coupling linkage

(Tables 1 and S3).

An actual maize RIL population

One biparental population in the maize NAM design

(Buckler et al. 2009), consisting of 187 RILs, was

used to construct a QTL distribution and effect model

that is more realistic compared with previous distri-

bution and effect models. The linkage map was based

on 756 markers, which covered 1,380.8 cM of the ten

maize chromosomes, with an average distance of

1.85 cM between markers. Component I is female

flowering time (FFLW), and II is male flowering time

(MFLW). The phenotypic distribution of FFLW and

MFLW is shown in Fig. 1. The minimum, mean, and

maximum phenotypic values (days) are 73.44, 81.47,

and 91.11 for trait I, and 72.50, 78.40, and 86.78 for

trait II, respectively. Positive correlation was

observed between FFLW and MFLW (Fig. 1). Phe-

notypic values of the four derived traits were the

addition, subtraction, multiplication, and division of

each component from traits I and II, respectively.

Population simulation and QTL mapping

in simulated populations

With the software QTL IciMapping (available from

http://www.isbreeding.net), 1,000 populations, each

consisting of 200 RILs, were generated for the above

QTL distribution and effect models. Phenotypic val-

ues of component traits were defined from the cor-

responding genetic models, from which the derived

traits were calculated. QTL mapping in each simu-

lated population was conducted by inclusive com-

posite interval mapping (ICIM; Li et al. 2007 and

Wang 2009) implemented in the QTL IciMapping

software. In ICIM, marker selection is conducted

only once through stepwise regression by considering

all marker information simultaneously; phenotypic

values are then adjusted by all markers retained in the

regression equation, except the two markers flanking

the current mapping interval (Li et al. 2007; Wang

2009). In this simulation study, the probabilities of a

marker entering into the model and moving out of the

model were set at 0.01 and 0.02, respectively. The

LOD threshold of 2.5 was used to declare the sig-

nificant QTL. These parameters were also used in

QTL mapping of the actual maize population.

Two methodologies were used to calculate QTL

detection power through simulation, as adopted in Li

et al. (2007) and Zhang et al. (2008). Firstly, each

pre-defined QTL was assigned to a support interval

with the true QTL in the middle; then the power was

estimated for the defined support interval. In this

case, QTL detected in other intervals were counted as

false positives. False discovery rates (FDR) were

calculated as the ratio of false QTL to all significant

QTL. Each support interval was 10 cM in length in

the power analysis. Average position and effect

estimates were performed on simulated populations

where higher-than-threshold peaks in the support

intervals were observed. Secondly, the power was

calculated for each interval defined by two flanking

markers. Power calculated in this way allows us to

investigate the distribution of all significant QTL in

the genome. No false QTL were counted in this case.

y = 1.05x -0.69
R² = 0.75

70

75

80

85

90

95

70 75 80 85 90 95

F
em

al
e 

fl
o

w
er

in
g

 d
ay

s 
(F

F
L

W
)

Male flowering days (MFLW)

Fig. 1 Phenotypic distribution of two component traits in a

maize population consisting of 187 recombinant inbred lines
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Results

QTL detection power in putative QTL distribution

and effect models

For Effect A, detection power of the four QTL in the

10 cM support interval was consistently high for

component traits under the three QTL distribution

models, i.e., 91.90–95.40% (Table 3). Detection

power was slightly lower for Q2 and Q4 in Distribu-

tion B, due to the linkage between Q1 and Q2, and

between Q3 and Q4 (Tables 1 and 2). FDR was

around 22%, and position and effect estimates

(Table 3) were close to their true values (Tables 1

and 2) regardless of the QTL distributions. Much

lower detection power and higher FDR were

observed for all derived traits under all distribution

models (Table 3).

The reduction in power when using derived traits

can be explained by the larger QTL number and by the

fact that more complicated genetic effects are associ-

ated with derived traits (Tables 3 and S2). For Effect A,

only additive effects of two QTL were involved in each

component trait. However, four QTL affect each

derived trait. Other genetic effects as well as the

additives are present for derived traits such as multi-

plication and division (Tables 3, S2 and S3), which

complicated the one-dimensional scanning process for

additive QTL. Multiplication of two component traits

can cause digenic QTL interactions (i.e., A13, A14, A23,

A24, and A34 in Tables S2 and S3), and division can

even cause interactions among three QTL (i.e., A134

among Q1, Q3, and Q4, and A234 among Q2, Q3, and Q4

in Tables S2 and S3). The increased QTL number and

more complicated genetic effects actually reduce the

additive genetic variance and, consequently, QTL

detection power. For example, in Distribution A, Q1

explains 50% of genotypic variance for component

trait I. When addition or subtraction is used, Q1

explains 25% of genotypic variance (calculated from

Table S3). When multiplication and division are used,

Q1 explains only 19.46% of genotypic variance

(calculated from Table S3). Thus reduced power is

expected when a derived trait is used in QTL mapping.

Addition and subtraction have similar detection

power in Distribution A, and multiplication and

division have similar detection power in Distributions

A and B (Table 3). However, in Distribution C,

addition has much higher detection power than

subtraction, and multiplication has much higher

detection power than division (Table 3), since the

repulsive linkage between Q1 and Q3, and between

Q2 and Q4, is present in subtraction and division

(Tables 1 and 3). Repulsive linkage reduces genetic

variance (Table S3), and therefore reduces heritabil-

ity as well, resulting in a reduction in detection

power. On the contrary, coupling linkage increases

genetic variance and therefore increases heritability,

which gives rise to increased detection power.

Though detection power was reduced for derived

traits, almost unbiased position estimation was none-

theless achieved (Table 3). Genetic effects were all

over-estimated (Table 3) compared with their theo-

retical effects (Table S3). For instance, for multipli-

cation, the theoretical additive effects were 20 for Q1

and Q2, and 25 for Q3 and Q4. The estimated effects

of Q1 and Q2 were approximately 23 in Distribution

A, 25 in Distribution B, and 25 in Distribution C; the

estimated effects of Q3 and Q4 were around 27 under

all models. Over-estimation of QTL effects in

simulation studies has been explained in Li et al.

(2007) and Zhang et al. (2008).

In the marker-interval power analysis, four clear

peaks were observed around the four predefined QTL

of two component and four derived traits for the three

distribution models (Fig. 2). The four clear peaks were

not affected when we included epistasis between Q1

and Q2, and between Q3 and Q4, i.e., for Effect B (Fig.

S1). In both cases (Figs. 2 and S1), the power was close

to 0 in other chromosomal regions. If there were only

two epistatic effects between Q1 and Q2, and between

Q3 and Q4, and none of Q1–Q4 had additive effects, i.e.,

Effect C, significant peaks were randomly distributed

and close to 0 across the whole genome for two

component and four derived traits (Fig. S3). Marker-

interval power analysis did not identify certain chro-

mosomal regions with significant high frequency of

additive QTL when using the four derived traits in

QTL mapping. Results from Effect C indicate that

epistasis between QTL controlling component traits is

less likely to cause derived-only QTL when derived

traits are used in QTL mapping.

QTL distribution and effect model in the maize

RIL population

For the two component traits (I for MFLW, II for

FFLW) in the maize RIL population, 11 additive
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QTL (denoted by qZ1–qZ11, where q stands for QTL

and Z for Zea mays L.) were found to be distributed

on eight of the ten maize chromosomes (Table S5;

Fig. 3). qZ1 and qZ2 were located on chromosome 1;

qZ3, qZ4, and qZ5 were located on chromosome 2;

and the other six QTL were located on different

Table 3 Simulation results of the pure additive genetic model (i.e., Effect A) for the three distribution models defined in Table 1

Distribution Parameter QTL Trait I Trait II Addition Subtraction Multiplication Division

A Power (%) Q1 95.10 69.60 69.30 55.20 50.50

Q2 94.80 69.80 70.40 54.10 50.90

Q3 92.50 67.20 65.30 76.90 75.20

Q4 94.50 68.40 65.40 77.80 75.20

FDR (%) 21.63 22.98 27.42 28.05 28.07 29.68

Estimated position (cM) Q1 18.54 (2.36) 18.55 (2.48) 18.62 (2.57) 18.36 (2.56) 18.45 (2.56)

Q2 28.46 (2.28) 28.49 (2.52) 28.38 (2.56) 28.44 (2.53) 28.52 (2.56)

Q3 52.65 (2.44) 52.68 (2.66) 52.61 (2.70) 52.75 (2.62) 52.65 (2.72)

Q4 62.85 (2.47) 62.83 (2.75) 62.63 (2.67) 62.88 (2.72) 62.58 (2.68)

Estimated additive effect Q1 1.00 (0.17) 1.10 (0.20) 1.11 (0.21) 23.32 (4.10) 0.06 (0.01)

Q2 1.01 (0.18) 1.09 (0.21) 1.11 (0.20) 23.42 (4.52) 0.06 (0.01)

Q3 1.00 (0.19) 1.11 (0.20) -1.11 (0.22) 26.46 (4.96) -0.07 (0.01)

Q4 1.00 (0.18) 1.10 (0.20) -1.12 (0.21) 26.61 (4.82) -0.07 (0.01)

B Power (%) Q1 95.40 67.40 65.60 54.80 49.90

Q2 92.90 62.40 66.00 50.00 49.90

Q3 93.70 69.90 67.00 79.20 74.90

Q4 91.90 62.40 64.90 73.50 72.90

FDR (%) 21.35 22.18 28.76 28.59 28.07 28.89

Estimated position (cM) Q1 18.46 (2.27) 18.43 (2.57) 18.66 (2.51) 18.51 (2.72) 18.73 (2.54)

Q2 52.80 (2.39) 52.63 (2.71) 52.43 (2.69) 52.48 (2.71) 52.39 (2.70)

Q3 28.49 (2.24) 28.52 (2.54) 28.64 (2.50) 28.60 (2.60) 28.70 (2.36)

Q4 62.86 (2.48) 62.75 (2.77) 62.46 (2.68) 62.79 (2.74) 62.52 (2.70)

Estimated additive effect Q1 1.01 (0.19) 1.16 (0.24) 1.15 (0.24) 25.40 (4.94) 0.07 (0.01)

Q2 1.01 (0.19) 1.16 (0.25) 1.16 (0.23) 25.12 (5.63) 0.07 (0.01)

Q3 1.03 (0.19) 1.15 (0.23) -1.16 (0.24) 27.47 (5.48) -0.07 (0.01)

Q4 1.00 (0.18) 1.12 (0.23) -1.14 (0.22) 26.61 (5.40) -0.07 (0.01)

C Power (%) Q1 95.20 66.60 52.40 53.60 37.70

Q2 95.00 69.20 51.60 54.70 36.40

Q3 92.90 63.40 47.80 69.70 56.20

Q4 92.60 61.50 49.90 72.60 58.00

FDR (%) 19.78 23.44 28.83 27.71 29.74 30.18

Estimated position (cM) Q1 18.51 (2.32) 18.45 (2.53) 18.47 (2.59) 18.50 (2.60) 18.40 (2.62)

Q2 28.45 (2.25) 28.55 (2.55) 28.44 (2.44) 28.61 (2.62) 28.56 (2.45)

Q3 52.83 (2.36) 52.62 (2.72) 52.66 (2.73) 52.60 (2.66) 52.65 (2.68)

Q4 62.82 (2.40) 62.69 (2.75) 62.75 (2.83) 62.71 (2.74) 62.83 (2.79)

Estimated additive effect Q1 1.00 (0.17) 1.16 (0.23) 1.12 (0.21) 24.76 (4.74) 0.06 (0.01)

Q2 1.01 (0.17) 1.16 (0.23) 1.12 (0.21) 24.88 (4.72) 0.06 (0.01)

Q3 0.99 (0.18) 1.16 (0.25) -1.12 (0.21) 27.88 (6.22) -0.07 (0.01)

Q4 0.99 (0.17) 1.12 (0.23) -1.11 (0.21) 27.17 (5.76) -0.07 (0.01)

Values in brackets are standard errors
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chromosomes. Seven QTL control component I,

explaining 59.14% of the phenotypic variance, and

seven QTL control component II as well, explaining

60.35% of the phenotypic variance. Three unlinked

QTL (i.e., qZ4, qZ10, and qZ11) control the two

component traits simultaneously, and their effects

were in the same direction (Table S5), which is

understandable considering the significant positive

correlation between components I and II (Fig. 1). In

addition, qZ3, qZ6, and qZ11 each explained more

than 10% of the phenotypic variance of component I,

as did qZ4 and qZ11 for component II. Thus qZ3,

qZ4, qZ6, and qZ11 can be viewed as major QTL for

the two component traits.
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Fig. 2 QTL detection power of the pure additive genetic

model, i.e., Effect A, for the three QTL distribution models.

Power was calculated as the proportion of simulated popula-

tions where one QTL was located in each of the 150 marker

intervals defined by 160 markers on the ten chromosomes.

Each interval was defined by two flanking markers. For clarity,

100, 200, 300, 400, and 500 were added to the detection power

of multiplication, subtraction, addition, component trait II, and

component trait I, respectively
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For derived trait addition, the four major QTL

mentioned above were all detected, but four of the 11

QTL were not identified, i.e., qZ2, qZ5, qZ7, and qZ8

(Table S5, Fig. 3). Two QTL were located on chro-

mosome 5 in the repulsion phase, at a distance of

97 cM apart. As for the seven QTL that were correctly

identified for addition, their position estimates were

similar to those of the two components, but their effects

were over-estimated about two-fold compared with the

estimates of component traits (Table S5). For subtrac-

tion, most of the 11 QTL were not identified. Only one

major QTL (i.e., qZ11) was detected with unbiased

position estimation. Instead, five additional positives

were located on chromosomes 3, 5, and 10. For

multiplication, the number of identified QTL and the

two new positives were the same as those for addition,

except that one major QTL, i.e., qZ3, was not detected.

Results for division were the worst. Only one QTL, i.e.,

qZ8, was detected. None of the four major QTL was

detected for division (Table S5).

In order to choose the putative genetic models of

the following simulations, qZ4, qZ10, and qZ11 were

assigned pleiotropic effects on the two components.

In fact, qZ4 was identified at the same chromosomal

position, i.e., 77 cM on chromosome 2, for both

component traits, and this position was used in

simulation. qZ10 was mapped at 46 cM and 49 cM

on chromosome 7 for the two components, respec-

tively, and position 47 cM was used in simulation.

qZ11 was mapped at 42 cM and 40 cM on chromo-

some 9 for the two components, respectively, and

position 40 cM was used in simulation.

Power simulation in the QTL distribution

and effect model identified in the maize RIL

population

When component I was used in QTL mapping, the

detection power of the four major QTL, i.e., qZ1,

qZ3, qZ6, and qZ11, was greater than 80% (Table S6)

due to their large genetic effects (Table S5). The

power of qZ4 was lower than that of qZ3 (Table S6)

because qZ4 is linked to qZ3 on chromosome 2, and

the additive effect of qZ4 was smaller compared with

qZ3 (Table S5). As expected, qZ7 had the smallest

effect among the seven QTL for trait I (Table S5),

and so had the lowest detection power (Table S6).

Similarly, qZ4, qZ5, qZ10, and qZ11 were the top

four QTL controlling component II, and their detec-

tion power was greater than 85% (Table S6). qZ2 was

the smallest QTL of the seven QTL controlling

component II (Table S5), and its detection power was

the lowest, i.e., 53.5% (Table S6). In addition, the

FDR for the two component traits was around 23.0%.

In general, when derived traits were used, QTL

detected for both component and derived traits had

comparable power; however, those detected for

component traits but not for derived traits had low

detection power (Table S6). For example, qZ2, qZ5,

qZ7, and qZ8 were not detected for addition (Table

S5), and their detection power was 12.3, 47.2, 25.8,

and 19.7%, respectively (Table S6), which is much

lower than those for components I and II. qZ8 and

qZ9 were detected in the actual population for

component II, and explained 2.93 and 2.88%,
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Fig. 3 LOD score profiles

from one-dimensional

scanning for two

component traits and four

derived traits in a maize

RIL population. For clarity,

20, 40, 60, 80, and 100 were

added to the LOD scores of

multiplication, subtraction,

addition, component trait II,

and component trait I,

respectively
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respectively, of the phenotypic variance for compo-

nent II. They had medium–high detection power

when component II was used in simulated popula-

tions, i.e., 70.0 and 64.0%, respectively, but very low

detection power when derived traits were used, i.e.,

13.7–21.7%.

On the other hand, most QTL with high detection

power for derived traits were detected in the actual

population for the corresponding derived traits

(Tables S5 and S6). However, the power of qZ3

was 97.0, 98.4, 96.7, and 98.3% for addition,

subtraction, multiplication, and division, respectively

(Table S6), but qZ3 was only detected for addition in

the actual maize population (Table S5), possibly due

to the increase in QTL number and genetic complex-

ity. As for the two component traits, there were seven

additive QTL in their genetic model (three QTL were

simulated as pleiotropic; Table S6). Eleven additive

QTL were involved in addition and subtraction. For

multiplication and division, there must be digenic and

higher-order interactions between the 11 QTL

(Tables S2 and S3), which reduced the efficiency of

additive QTL mapping.

The FDR for subtraction and division were much

higher than the FDR for the two component traits,

and derived traits addition and multiplication (Table

S6), which may also explain the fact that several

additional QTL were identified for subtraction in the

actual mapping population. Similar to the three

putative genetic models, QTL position was almost

unbiased for both component and derived traits

(Tables S5 and S6). The effect was over-estimated

for the two component traits, and under-estimated for

derived traits (Tables 3, S5 and S6).

Heritability of component and derived traits

For simulated Effect A, heritabilities of the four

derived traits were equal to or lower than those for

the two component traits in Distributions A and B

(Table S7). In Distribution C, heritabilities of addi-

tion and multiplication were higher than those of

subtraction and division, since the linkage phase is

present in different derived traits (Table S7). Linkage

in coupling, as present in addition and multiplication,

increases the genetic variance, and therefore

increases heritability as well. On the contrary, linkage

in repulsion, as present in subtraction and division,

decreases the genetic variance, and therefore

decreases heritability. Heritability in the other two

QTL distribution and effect models in the maize

population follows a similar trend, except that the

change in genetic variance is also caused by pleio-

tropic QTL in the maize population. Even if derived

traits have similar heritability to that of component

traits, more QTL are involved in the genetic archi-

tecture of derived traits, and these QTL have more

complicated linkage relationship and genetic effects.

It is expected that the use of derived traits will result

in reduced power and increased false positives.

What does a derived-only QTL stand for?

Some derived-only QTL have been reported that were

identified for a derived trait but not for either of the

two component traits. This happened in the maize

population used in this study as well. Two linked

QTL on chromosome 3 and one QTL on chromosome

10 were identified for subtraction. Two QTL at 1 and

98 cM on chromosome 5, respectively, were identi-

fied for addition, subtraction, and multiplication, but

none of them was identified for either component trait

(Table S5). However, some derived-only QTL may

be explained by less-significant QTL in component

traits. For example, there was a peak in the LOD

profile of component I at 1 cM of chromosome 5,

where the LOD score was 2.29, and the additive

effect was -0.4096 (see dashed-line box in Fig. 3).

No clear peak was observed in the LOD profile of

component II around this position, so its effect on

component II can be regarded as 0. It is to be

expected that if this QTL could be identified for

addition, subtraction, and multiplication, it would

have negative effects as well. In reality, its effect was

estimated as -0.7590, -0.3084, and -67.0759 for

addition, subtraction, and multiplication, respectively

(Table S5). Though it does not exceed the LOD

threshold of 2.5, this QTL is very likely to be the

same as those identified at this position for addition,

subtraction, and multiplication. Two linked QTL on

chromosome 3 identified for subtraction may be the

same as the one in the peak having a LOD score of

2.09 for component II (see dashed-line box in Fig. 3).

However, the QTL identified for three derived traits

at 98 cM on chromosome 5 is an exception (Fig. 3).

There were no clear peaks in the LOD profiles of

traits I and II around position 98 cM on chromo-

some 5.
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To investigate the distribution of significant QTL

(including true and false positives) in the genome,

detection power was calculated for marker intervals

defined by 756 markers on the maize genome, i.e., each

interval defined by two flanking markers was viewed as

a support interval (Fig. S2). No significant QTL was

located on chromosomes 8 and 10 through QTL

mapping for the two component traits (Table S5);

therefore, no QTL was assumed on them in simulation.

As a result, the probability that a QTL was mapped on

the two blank chromosomes was close to 0 (Fig. S2),

regardless of whether component or derived traits were

used. In putative effect models Effect A and Effect B

under Distributions A–C, we did not observe high

detection power in chromosome regions other than the

four predefined QTL (Figs. 2, and S1), indicating the

additive QTL identified from derived traits must be

QTL identified for one component trait or for multiple

component traits. In Effect C, no chromosomal regions

showed significantly high frequency of additive QTL

when using the four derived traits in QTL mapping

(Fig. S3), indicating that epistasis between QTL

controlling component traits is less likely to cause the

derived-only additive QTL. Thus, if a chromosome

does not harbor any additive QTL affecting component

traits, it is unlikely that any additive QTL will be

identified for a derived trait.

High detection power was observed only around

the 11 identified QTL, indicating that derived-only

QTL may be false positives. Low power was

observed for qZ8 and qZ9 for derived traits, due to

their small additive effects on component II (Table

S5). Both qZ10 and qZ11 had high detection power

for the two component traits addition and multipli-

cation, but had close to zero detection power for

subtraction and division. This is understandable when

looking at their genetic effects on the two component

traits. The additive effect of qZ10 was estimated as

-0.5835 and -0.4757 on components I and II,

respectively. The additive effect of qZ11 was

estimated as 0.9959 and 0.7396 on components I

and II, respectively. They will have much larger

effects on addition and multiplication, but much

smaller effects on subtraction and division. Thus

qZ10 and qZ11 can be easily identified for addition

and multiplication (Table S6; Fig. S2), but not for

subtraction and division. When a derived trait is used,

some QTL may have detection power comparable to

that of component traits (e.g., qZ1, qZ3, and qZ6 in

each derived trait), while some may have lower

detection power, e.g., qZ10 and qZ11 in subtraction

or division (Table S6; Fig. S2). For the two compo-

nent traits, high detection power was observed around

all the 11 QTL positions, and no clear high detection

power was observed beyond the 11 QTL identified in

the actual maize population. In summary, derived-

only QTL can be explained either as minor QTL that

are not significant in QTL mapping of component

traits, or as false positives.

Discussion

Derived traits have been frequently used in genetics

and breeding. When used in QTL mapping, they often

show discrepancy with QTL identified for component

traits, and derived-only QTL have occasionally been

reported. In this study we show that the genetic

control of derived traits can be very complicated,

even when a simple genetic model was assumed for

component traits, especially for multiplication and

division (Tables S2, S3, and S4). The complexity

arises from three sources: (1) the number of QTL

involved, (2) higher-order QTL interaction, and (3)

the linkage relationship between QTL.

Each QTL that affects a component trait may

affect a derived trait as well. So the number of QTL

affecting a derived trait is greater than the number of

QTL affecting each component trait. For the two

component traits defined in Table 1 and the pure

additive effect model (Table 2), derived traits mul-

tiplication and division contain interacting genetic

effects (Table S2). The increase in the number of

QTL will reduce the efficiency of QTL mapping due

to the decreased proportion of the phenotypic vari-

ance for each QTL that can be explained (Table S3)

and the increased difficulty in controlling the back-

ground genetic variance (Li et al. 2007; Zhang et al.

2008). Interacting effects or epistasis will greatly

complicate the QTL mapping procedure if epistatic

effects are to be included and estimated (Li et al.

2008; Wang 2009). Derived traits may also compli-

cate the linkage relationship between QTL. Taking

Distribution C and Effect A as an example (Tables 1

and 2), Q1 and Q3 were linked on chromosome 1, and

Q2 and Q4 were linked on chromosome 2. Each

component trait was controlled by two independent

QTL, and therefore detection power was high when
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component traits were used in QTL mapping (Table 3).

In comparison, each derived trait was controlled by two

pairs of linked QTL. Linkage was involved in the

genetic control of each derived trait, and therefore

reduced QTL detection power (Table 3).

The increased complexity of the genetic control of a

derived trait also complicates the calculation of genetic

variance and heritability (Tables S3 and S4). Taking

Effect A as an example, when the QTL for one

component trait are independent from the QTL for

another component trait, i.e., Distributions A and B, the

variance of addition or subtraction is equal to the sum

of the variances of two component traits. For Distri-

bution C, the genetic variance of addition or subtrac-

tion is not equal to the sum of the two component traits

due to the linkage between Q1 and Q3 and between Q2

and Q4. For addition, Q1 and Q3 are linked in the

coupling phase. This holds true for Q2 and Q4 as well.

The coupling linkage increases the genetic variance of

addition (Table S3). For subtraction, Q1 and Q3 are

linked in the repulsion phase. The same is true for Q2

and Q4. The repulsive linkage decreases the genetic

variance of addition (Table S3), and the change in

genetic variance reflects the change in heritability. In

Distributions A and B, heritability of derived traits is

comparable to that of component traits, whereas in

Distribution C, subtraction and division have much

lower heritability (Table S7). In the distribution and

effect model from the maize population, the low

heritability of subtraction and division may also be

caused by positive pleiotropic QTL, i.e., QTL having

the same effect direction on both component traits.

Genetic variance and environmental error together

determine broad-sense heritability. Genetic variance

of multiplication or division can be calculated from

genotypic values of the 16 genotypes (Table S1) and

their expected frequencies in a RIL population, but

the environmental error is difficult to obtain theoret-

ically. In simulation, we can separate genetic effects

from environmental effects, and thus are able to

calculate the heritability for all traits (Table S7).

After logarithmic transformation, multiplication can

be viewed as the addition of two component traits,

and division can be viewed as the subtraction of two

component traits. Therefore, multiplication has sim-

ilar heritability to addition, and division has similar

heritability to subtraction. In the maize population,

QTL detected for addition and multiplication are

more common, as are QTL detected for division and

subtraction, but the LOD score for division is much

lower (Table S5). In simulation, QTL detection

powers for multiplication and addition are more

similar, as are QTL detection powers for division and

subtraction. Similar simulation results were obtained

when two epistatic effects between Q1 and Q2 and

between Q3 and Q4 were included (i.e., Effect B) in

Distributions A–C (Tables S3 and S4).

In the actual maize genetic population, we under-

stand that the other three derived traits, i.e., addition,

multiplication, and division of FFLW and MFLW in

the maize population, may not have meaningful

biological background. Instead of using more popu-

lations where each derived trait has a biological

background, we simply used all four derived traits

from FFLW and MFLW to show the difference in

QTL mapping results. Although not reported in this

study, we tried one rice F2 population phenotyped for

grain length and grain width (where division makes

sense), and one maize RIL population phenotyped for

two protein contents (where addition makes sense).

Very similar results were obtained in these two

mapping populations as well.

Taking ASI as an example, we believe that a QTL

has an effect on ASI only if it has an effect on FFLW

but not on MFLW (i.e., qZ1, qZ3, qZ6, and qZ7 in

Table S5), or if it has an effect on MFLW but not on

FFLW (i.e., qZ2, qZ5, qZ8, and qZ9 in Table S5), or

it has an effect on FFLW and MFLW but the effects

are of different sizes (i.e., qZ4, qZ10, and qZ11 in

Table S5). We do not exclude the possibility that

some QTL may become easier to detect for ASI. For

example, if one QTL has an effect of 0.5 day on

FFLW, but an effect of -0.5 day on MFLW, it will

have an effect of 1 day on ASI. If this is the case, this

QTL may become easier to locate through ASI. In the

marker-interval power analysis based on the observed

QTL distribution and effect model in the maize

population (Fig. S3), except for those around the 11

identified QTL we did not see other chromosomal

positions that had abnormally high power for FFLW

and MFLW. The two ASI-only QTL (identified at

98 cM on chromosome 5 and 91 cM on chromosome

10; Table S5) were much likely false positives, as no

significant peaks were observed in similar regions of

the LOD profiles of FFLW and MFLW.

In breeding, index selection is commonly used to

combine all the information available on each compo-

nent’s performance (Baker 1986; Falconer and

672 Mol Breeding (2012) 29:661–673

123



Mackay 1996; Bernardo 2002). Though different

indices, such as optimum index, base index, and

multiplicative index, etc. (Baker 1986; Bernardo 2002)

have been proposed, typically most are derived traits

and may have much more complicated genetic archi-

tecture than component traits. Few genetic studies have

been conducted based on indices, but this does not

deter their use in breeding. In fact, genetic studies and

breeding have objectives that are different, but not

mutually contradictory in the broad sense. It is the

breeders’ objective to combine as many favorable

genes as possible. The use of derived traits is efficient

for selecting all favorable genes simultaneously. In

contrast, geneticists have the objective of studying as

many component genes as possible. For this purpose,

the use of component traits may be more efficient, since

fewer genes are involved.

In conclusion, the use of derived traits in QTL

mapping may increase the QTL number; may

decrease the proportion of phenotypic variance that

can be explained by component QTL; may cause

higher-order QTL interactions than observed in

component traits; and may complicate the linkage

relationship between QTL. The increased complexity

of the genetic architecture of derived traits reduces

QTL detection, and increases the false discovery rate.

However, this should not rule out the use of derived

traits as indices in breeding where the simultaneously

selecting multiple genes is the major objective.

Acknowledgments This work was supported by the National

973 Program of China (Project no. 2011CB100100), and the

Natural Science Foundation of China (Project no. 31000540).

References

Aluko G, Martinez C, Tohme J, Castano C, Bergman C, Oard

LH (2004) QTL mapping of grain quality traits from the

interspecific cross. Oryza sativa 9 O. glaberrima. Theor

Appl Genet 109:630–639

Baker RJ (1986) Selection indices in plant breeding. CRC

Press, Inc., Boca Raton, Florida

Bernardo R (2002) Breeding for quantitative traits in plants.

Stemma Press, Woodbury, MN

Bolanos J, Edmeades GO (1996) The importance of the

anthesis-silking interval in breeding for drought tolerance

in tropical maize. Field Crop Res 48:65–80

Buckler SE, Holland JB, Bradbury PJ, Acharya CB, Brown PJ,

Browne C, Ersoz E, Flint-Garcia S, Garcia A, Glaubitz

JC, Goodman MM, Harjes C, Guill K, Kroon DE, Larsson

S, Lepak NK, Li H, Mitchell SE, Pressoir G, Peiffer JA,

Rosas MO, Rocheford TR, Romay MC, Romero S, Salvo

S, Villeda HS, da Silva HS, Sun Q, Tian F, Upadyayula N,

Ware D, Yates H, Yu J, Zhang Z, Kresovich S,

McMullenet MD (2009) The genetic architecture of maize

flowering time. Science 325:714–718

Falconer DS, Mackay TFC (1996) Introduction to quantitative

genetics, 4th edn. Longman Group, Essex, UK

Li J, Xiao J, Grandillo S, Jiang L, Wan Y, Deng Q, Yuan L,

McCouch SR (2004) QTL detection for rice grain quality

traits using an interspecific backcross population derived

from cultivated Asian (O. sativa L.) and African (O.
glaberrima S.) rice. Genome 47:697–704

Li H, Ye G, Wang J (2007) A modified algorithm for the

improvement of composite interval mapping. Genetics

175:361–374

Li H, Ribaut JM, Li Z, Wang J (2008) Inclusive composite

interval mapping (ICIM) for digenic epistasis of quanti-

tative traits in biparental populations. Theor Appl Genet

116:243–260

Messmer R, Fracheboud Y, Bänziger M, Vargas M, Stamp P,

Ribaut JM (2009) Drought stress and tropical maize:

QTL-by-environment interactions and stability of QTLs

across environments for yield components and secondary

traits. Theor Appl Genet 119:913–930

Rabiei B, Valizadeh M, Ghareyazie B, Moghaddam M, Ali AJ

(2004) Identification of QTLs for rice grain size and shape

of Iranian cultivars using SSR markers. Euphytica

137:325–332

Redona ED, Mackill DJ (1998) Quantitative trait locus analysis

for rice panicle and grain characteristics. Theor Appl

Genet 96:957–963

Ribaut JM, Ragot M (2007) Marker-assisted selection to

improve drought adaptation in maize: the backcross

approach, perspectives, limitations, and alternatives. J Exp

Bot 58:351–360

Ribaut JM, Hoisington DA, Deutsch JA, Jiang C, González-de-
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