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Quantitative trait gene or locus (QTL) mapping is routinely
used in genetic analysis of complex traits. Especially in
practical breeding programs, questions remain such as how
large a population and what level of marker density are
needed to detect QTLs that are useful to breeders, and how
likely it is that the target QTL will be detected with the data
set in hand. Some answers can be found in studies on
conventional interval mapping (IM). However, it is not
clear whether the conclusions obtained from IM are the
same as those obtained using other methods. Inclusive
composite interval mapping (ICIM) is a useful step
forward that highlights the importance of model selection
and interval testing in QTL linkage mapping. In this study,
we investigate the statistical properties of ICIM compared
with IM through simulation. Results indicate that IM is less

responsive to marker density and population size (PS).
The increase in marker density helps ICIM identify indepen-
dent QTLs explaining 45% of phenotypic variance.
When PS is 4200, ICIM achieves unbiased estimations of
QTL position and effect. For smaller PS, there is a tendency
for the QTL to be located toward the center of the
chromosome, with its effect overestimated. The use of
dense markers makes linked QTL isolated by empty marker
intervals and thus improves mapping efficiency. However,
only large-sized populations can take advantage of densely
distributed markers. These findings are different from
those previously found in IM, indicating great improvements
with ICIM.
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Introduction

Quantitative trait gene or locus (QTL) mapping has
become a routine approach for genetic studies of
complex traits in plants, animals and humans because
of the availability of high-throughput molecular markers.
In comparison with association mapping, QTL linkage
mapping in animals and humans is normally based on
pedigree data, but in plants it is more often based on
biparental genetic populations. Statistical methods for
QTL linkage mapping have been extensively studied
(Lander and Botstein, 1989; Darvasi et al., 1993; Zeng,
1994; Whittaker et al., 1996; Piepho, 2000; Sen and
Churchill, 2001; Xu, 2003; Bogdan and Doerge, 2005; Li
et al., 2007; Wang, 2009), and composite interval mapping
(CIM) proposed by Zeng (1994) represents one of the
most commonly used methods.

Recently, Li et al. (2007) found that CIM resulted in
biased mapping results because of the simultaneous
estimation of QTL and background effects in the
implementation algorithm. Inclusive composite interval
mapping (ICIM) was then proposed (Li et al., 2007;

Wang, 2009) to deal with this problem while retaining
other advantages related to CIM. Major advantages of
ICIM were summarized as follows: (1) ICIM controls the
sampling variance better; (2) it makes the background
marker selection process easier and simpler; (3) it gives
clearly high logarithm of the odds (LOD) scores at
chromosomal regions with QTL but rather low LOD
scores (that is, close to 0) in which no QTLs are located,
thereby increasing mapping power and decreasing the
false discovery rate (FDR); (4) it is robust for mapping
parameters; (5) it can be extended to map digenic
epistatic QTLs regardless of whether the two interacting
QTLs have significant additive effects or not; and (6) the
expectation and maximization (EM) algorithm used in
ICIM has a high convergence speed and is therefore less
computing intensive (Li et al., 2007, 2008; Zhang et al.,
2008).

Available mapping methods have their own statistical
properties and power for detecting QTL. Factors influen-
cing the statistical power of each method include
mapping population size (PS), marker density, signifi-
cance level in declaring the existence of QTL, contribu-
tion of the segregating QTL to the observed phenotypic
variance and genetic distances of QTL to markers. There
are several simulation studies on how these factors affect
the detection power of interval mapping (IM). Darvasi
et al. (1993) investigated the effect of marker density in a
backcross population, and concluded that reducing
marker spacing below 10 or 20 cM does not provide
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additional gains, regardless of PS and gene effect.
At 20 cM marker density and assuming QTLs have equal
effects with all positive alleles from one parent, Beavis
(1994) showed that the estimated effects with correctly
identified QTLs were greatly overestimated if only 100
progeny were evaluated, slightly overestimated if 500
progeny were evaluated and fairly close to the actual
magnitude when 1000 progeny were evaluated; this was
statistically explained by Xu (2003). Using an analytical
method, Piepho (2000) showed that the power of QTL
detection and the standard errors of effect estimates are
little affected by an increase in marker density beyond
10 cM. The bias of estimators of QTL effects and locations
from IM was discussed by Bogdan and Doerge (2005).
On the basis of multiple interval mapping, Mayer et al.
(2004) studied the accuracy of position and effect
estimates of linked QTLs in F2 populations by simula-
tion. Some theoretical and simulation studies have also
been conducted on the confidence interval of IM
(Visscher et al., 1996; Dupuis and Siegmund, 1999).
Recently, Bogdan et al. (2008) showed the influence of
marker density on the detection power of small- or
medium-sized QTLs by a modified version of the
Bayesian information criterion.

ICIM has superior genetic and statistical properties,
which may represent an important improvement in QTL
linkage mapping. It may be misleading to assume that
the influence on ICIM of experimental parameters such
as PS, QTL effect and marker density is the same as has
been found in IM. Our objectives in this study were (1) to
investigate the effect of genetic effect, PS and marker
density on statistical power, position and effect estima-
tions of ICIM and (2) to provide practical and statistical
tables of probabilities and confidence intervals so
that a QTL can be identified in mapping populations of
various sizes.

Materials and methods

Genetic models used in simulation
In this paper, we considered a hypothetical genome
consisting of 10 chromosomes. Each chromosome was

160 cM in length, similar to the maize genome. Four
marker densities (MD) were used (that is, MD¼ 40, 20, 10
and 5 cM) from sparse to dense, which corresponded to
5, 9, 17 and 33 evenly distributed markers on each
chromosome. Two genetic models (Tables 1 and 2) were
simulated.

In the first genetic model (Table 1), there were eight
independent QTLs, that is, IQ1–IQ8, with different levels
of additive effects on a quantitative trait of interest
(Table 1). IQ1 had the smallest genetic effect, explaining
only 1% of phenotypic variation, that is, phenotypic
variance explained (PVE)¼ 1%, whereas IQ8 had the
largest effect, explaining 30% of phenotypic variation,
that is, PVE¼ 30% (Table 1). The eight QTLs were
distributed on different chromosomes, and no interac-
tions between QTLs were considered. The error variance
was set at 0.25, for a total of phenotypic variance equal to
one. Thus, the additive effect of a QTL was equal to the
square root of the corresponding PVE (Table 1). Broad-
sense heritability of this quantitative trait was therefore
0.75, which is the sum of PVE as all QTLs were not
linked.

Table 1 One genetic model consisting of eight independent QTLs

QTL Chromosome Position (cM) Additive effect PVE (%)

IQ1 1 25 0.1000 1
IQ2 2 32 0.1414 2
IQ3 3 39 0.1732 3
IQ4 4 46 0.2000 4
IQ5 5 53 0.2236 5
IQ6 6 60 0.3162 10
IQ7 7 67 0.4472 20
IQ8 8 74 0.5477 30

Abbreviations: PVE, phenotypic variance explained; QTL, quanti-
tative trait locus.
The genome consists of 10 chromosomes, each 160 cM in length. The
eight QTLs were represented by IQ1–IQ8. Each QTL was
represented by chromosome number, position (cM), additive
genetic effect and proportion of PVE by the QTL. The phenotypic
variance was fixed at 1.0, and the additive effect of a QTL was equal
to the square root of the corresponding PVE. Broad-sense
heritability was set at 0.75, which is the sum of PVE, as all QTLs
are not linked. Therefore, the error variance was 0.25.

Table 2 One genetic model of two linked QTLs

Linkage phase Position (cM) Additive effect Genetic
variance (VG)a

Error
variance (Ve)

Heritability
(H2)b

PVE (%) of
each QTLc

LQ1 LQ2 LQ1 LQ2

Coupling 22 32 0.3162 0.3162 0.3637 0.8 0.3125 8.59
22 42 0.3162 0.3162 0.3340 0.8 0.2945 8.82
22 52 0.3162 0.3162 0.3097 0.8 0.2791 9.01

Repulsive 22 32 0.3162 �0.3162 0.0362 0.8 0.0433 11.96
22 42 0.3162 �0.3162 0.0659 0.8 0.0761 11.55
22 52 0.3162 �0.3162 0.0902 0.8 0.1013 11.23

Abbreviations: PVE, phenotypic variance explained; QTL, quantitative trait locus.
The genome consists of 10 chromosomes, each 160 cM in length. The two QTLs were represented by LQ1 and LQ2. They were represented by
their positions (cM) on chromosome 1, additive genetic effects, total genetic variance, error variance, broad-sense heritability and proportions
of the PVE.
aVG¼ a2

1+a2
2+2(1–2r)a1a2 where a1 and a2 are the additive effects of LQ1 and LQ2, respectively, and r is the recombination frequency between

LQ1 and LQ2. Haldane mapping function is used to convert genetic distance to recombination frequency.
bBroad-sense heritability was calculated as H2¼VG/(VG+Ve).
cPVE of LQ1 was calculated as a2

1/(VG+Ve), and PVE of LQ2 was calculated as a2
2/(VG+Ve). As a2

1¼ a2
2 in the linkage model, LQ1 and LQ2 have

the same PVE. Error variance was fixed at 0.8. If LQ1 and LQ2 were not linked, each would explain 10% of the phenotypic variance, and the
heritability would be 0.2.
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In the second genetic model, two QTLs, that is, LQ1
and LQ2, were linked on chromosome 1. Two linkage
phases, that is, coupling and repulsion, and three linkage
distances, that is, 10, 20 and 30 cM, were considered
(Table 2). No QTLs were located on the other nine
chromosomes. The genetic effects of LQ1 and LQ2 were
the same, but in different directions to simulate the two
linkage phases. Error variance was fixed at 0.80 for the
two linkage phases and three linkage distances. For the
coupling linkage, the total genetic variance in a doubled
haploid (DH) genetic population was 0.3637, 0.3340 and
0.3097, and each QTL explained 8.59, 8.82 and 9.01% of
phenotypic variance for linkage distances 10, 20 and
30 cM, respectively. For the repulsive linkage, the total
genetic variance in a DH population was 0.0362, 0.0659
and 0.0902, and each QTL explained 11.96, 11.55 and
11.23% of phenotypic variance for linkage distances 10,
20 and 30 cM, respectively (Table 2). If there was no
linkage between LQ1 and LQ2, the total genetic variance
in a DH population was 0.2, and heritability was 20%.
Hence, the coupling linkage increases genetic variance
and, therefore, increases heritability. On the contrary, the
repulsive linkage decreases genetic variance and, there-
fore, decreases heritability. It is worth noting that the
sum of PVE is not equal to heritability in the presence of
linkage.

Simulated populations and QTL mapping of ICIM
DH lines were simulated by crossing two inbred parental
lines. ICIM was used to conduct QTL mapping, which
consists of two steps (Li et al., 2007; Zhang et al., 2008). In
the first step of ICIM, marker selection is conducted
through stepwise regression by considering all marker
information simultaneously. Phenotypic values are then
adjusted by all markers retained in the regression
equation, except the two markers flanking the current
mapping interval. In the second step, the adjusted
phenotypic values are used in one-dimensional scan-
ning. In this study, the two probabilities for entering and
removing variables in the first step were set at 0.01 and
0.02, respectively. The empirical LOD threshold was set
at 3.0 in the second step. Mapping populations were
generated, and QTL mapping was completed by a
software package called QTL IciMapping, available from
http://www.isbreeding.net.

Calculation of statistical power, FDR, LOD score and

position and effect estimations
ICIM is based on the interval test, which is not a point
estimation procedure (Li et al., 2007). One QTL is
unlikely to be located exactly at the predefined position
in each simulated mapping population. In this sense, a
confidence interval (CI) has to be used to indicate which
significant QTLs belong to which predefined QTLs in
simulation. As an example, a CI of 10 cM was used by Li
et al. (2007) and Zhang et al. (2008) to compare the
detection power of various QTL mapping methods.

IQ1–IQ8 were not linked in our simulation study
(Table 1), and hence in this case there is no misunder-
standing regarding which detected QTL belongs to
which putative QTL. For instance, a QTL identified on
chromosome 1 will be IQ1, one identified on chromo-
some 2 will be IQ2 and so on. Therefore, the CI of each
QTL was first assigned as the whole chromosome. This

provided the opportunity to properly calculate the
variations of estimated location and effect. Thus, the
power of each simulated QTL was calculated as
the frequency, out of 1000 simulation runs, with which
the putative QTL was correctly identified on the pre-
defined chromosome, and the variation of the estimated
QTL position was determined accordingly. When more
than one QTL was identified on a chromosome, the one
with the highest LOD score peak was counted. QTL
identified on the last two chromosomes, that is, chromo-
somes 9 and 10, were assumed to be false positives, from
which FDR was calculated as the proportion of false
positives to the total number of significant discoveries
(Benjamini and Hochberg, 1995).

Second, we were also interested in the statistical power
to identify QTL in a CI of predefined length, say 10 or
20 cM, around the true QTL location (Li et al., 2007). In
this case, power can be achieved by counting in how
many of the 1000 simulation runs the estimated QTL
locations fall in the fixed CI. QTLs identified in other
intervals and chromosomes were counted as false
positives. FDR can be then calculated (Benjamini and
Hochberg, 1995). In this study, power and FDR from
CI¼ 10 cM were given for both genetic models, that is,
for IQ1–IQ8 and LQ1 and LQ2.

For IQ1–IQ8 when CI was the whole chromosome in
which each QTL was located, the LOD scores and
position and effect estimates were calculated from peaks
in the CI having the LOD score over the predefined
threshold. The length of a 95% CI for each IQ1 and IQ2
position is equal to 2�U1-a/2� SE, where SE is the
standard error of estimated QTL position, U1-a/2 is the
1-a/2 quantile of the standard normal distribution and a
is the type I error, set at 0.05 when 95% is the probability
level of the CI. Thus U1-a/2 is equal to 1.96 in this study.
For LQ1 and IQ2 when CI was set as 10 cM in length
centered at the putative QTL position, to monitor the
performance of linked QTL dissection, the LOD score
and QTL effect were calculated for each scanned
chromosomal position by averaging the 1000 simulation
runs. It is expected that the QTL effect is underestimated,
as estimates from nonsignificant LOD scores are also
counted.

Results

Effect of PS and marker density on detection power
LOD score is the test statistic used in ICIM and IM to
declare the existence of QTL. The higher the LOD score,
the more likely there is a QTL. It is clear that higher PVE
and larger PS resulted in higher LOD scores, regardless
of the mapping method (Figure 1 and Supplementary
Figure S1). But ICIM can produce much higher LOD
scores than IM, which empirically indicates the
high mapping power of ICIM compared with IM. In
addition, for both ICIM and IM, QTLs with larger genetic
effects have obviously higher LOD scores than QTLs
with smaller effects. For a specific marker density and
genetic effect, LOD score linearly increases with PS
(Figure 1 and Supplementary Figure S1), indicating
the great importance of PS in QTL mapping. For ICIM,
more densely distributed markers can increase the
LOD score as well, but the advantage of using denser
markers diminishes as PS decreases. For IM, the LOD
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score did not change much when MD became denser.
Therefore, ICIM has greater response to MD than IM,
indicating that ICIM can take more advantage of using
dense markers in QTL mapping.

Generally speaking, QTL detection power increases
and FDR decreases as PS rises, especially for ICIM and
larger-effect QTLs (those explaining X3% of phenotypic
variation), regardless of the length of the predefined CI
(Figure 2). The power of MD¼ 40 cM was consistently
lower than that of other MD, especially for QTL with
medium-sized genetic effects, that is, QTL explaining
3–10% of phenotypic variation. This result suggests that
MD¼ 40 cM would be too sparse in QTL mapping when
the target is to identify QTL with medium-to-large
genetic effects (Figure 2).

When CI is the whole chromosome in which each QTL
is located, for both ICIM and IM the difference in
detection power was marginal among MD¼ 5, 10 and
20 cM, especially considering that a total of 330 markers
were needed for MD¼ 5 cM, whereas a total of 90
markers were needed for MD¼ 20 cM. This is consistent
with what we have observed from the LOD score shown
in Figure 1 and Supplementary Figure S1. For QTL with
PVE 410% and PS over 100, the power of ICIM and IM
were similar, all 490% (Figures 2a and b), but the
average LOD scores from MD¼ 5, 10 and 20 cM were all
46 under ICIM (Figure 1a and Supplementary Figures
S1A and S1B), and 44 under IM (Figure 1c and
Supplementary Figures S1C and S1D). When ICIM was
used for QTLs with low PVE, that is, IQ1 and IQ2
(Table 1), the increase in MD was useful for increasing
QTL detection power, especially for greater PS. In the
meantime, denser markers resulted in higher FDR
(Figure 2). For example, for MD¼ 5 cM, detection power

is the highest, but FDR is also the highest among the four
marker densities.

When CI was the whole chromosome and PS was
4200, FDR from ICIM and IM was close to 0; when PS
was o200, FDR of ICIM was a bit higher than that of IM,
but detection of ICIM was much higher (Figures 2a and
b). As expected, the use of a narrower CI, that is, 10 cM in
length centered at the putative QTL position, resulted
in lower detection power and higher FDR, as more
significant QTLs were counted as false positives (Figures
2c and d).

Estimation of QTL position and effect
As PS increases, the estimated QTL locations of ICIM
approach their real values (Table 1), regardless of the
QTL effect and MD (Figure 3 and Supplementary Figure
S2). The convergence speed depends mostly on the QTL
effect. For PVE X5%, the average estimated position
approaches the true position when PS X200, whereas a
larger PS is needed for the estimated position of QTL
with PVE o5% to converge with the true position
(Figures 3a and b and Supplementary Figures S2A and
S2B). Compared with ICIM, a much larger PS is needed
for the estimated position of IM to converge with the true
position (Figures 3c and d and Supplementary Figures
S2C and S2D).

Before the estimated location converged with its actual
value or when the sample size was small, there was a
tendency for the identified QTL to be located toward the
middle of the chromosome, that is, at 80 cM (Figure 3
and Supplementary Figure S2). The eight QTLs defined
in Table 1 are all located on the left side of their
corresponding chromosomes. When QTL location was
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Figure 1 Average LOD scores from 1000 simulation runs of ICIM (a, b) and IM (c, d) across a range of population sizes for IQ1–IQ8
corresponding to eight levels of explained phenotypic variance (PVE; PVE¼ 1, 2, 3, 4, 5, 10, 20 and 30%) and two marker densities (MD;
MD¼ 5 and 40 cM). The confidence interval (CI) was assumed to be the whole chromosome. LOD scores were calculated from peaks in the CI
having the LOD score over the predefined threshold of 2.5.
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changed to the right side of the chromosome, a similar
trend was observed (Supplementary Figure S3). This is
consistent with what Bogdan and Doerge (2005) stated
that when the QTL is close to one end of the chromo-
some, the distribution of estimators of QTL location is
skewed toward the opposing end of the chromosome.
The phenomenon observed here may have an implica-
tion for QTL fine mapping and map-based cloning. If a
QTL is estimated to be on the left side of a chromosome,
the true QTL position is likely located to the left of the
estimated position. On the other hand, if a QTL is
estimated to be on the right side of a chromosome, the
true QTL position is likely located to the right of
the estimated position.

The increase in MD and PS reduced the 95% CI of the
estimated QTL location of ICIM and IM (Table 3) because

of the reduced standard error (results not shown). But in
some cases, IQ6 had a narrower CI than IQ7, reflecting
the influence of marker distributions on QTL detection.
For MD¼ 10 and 20 cM, IQ6 coincided with a marker on
chromosome 6, representing the easiest mapping scenario
(Darvasi et al., 1993) and resulting in narrower estimated
CI. In all cases, the 95% CIs of IM were wider than
those of ICIM, indicating the improved mapping
efficiency of ICIM.

As PS increased, the estimated QTL effects of ICIM
asymptotically approached their actual values (Table 1)
regardless of the QTL effect and MD (Figures 4a and b
and Supplementary Figures S4A and S4B), but the
genetic effects were overestimated by IM even when
PS¼ 600 for QTL with PVE o3% (Figures 4c and d and
Supplementary Figures S4C and S4D). Similar to the

ICIM, CI is the whole chromosome where each QTL is located

ICIM, CI is 10 cM in length centered at the putative QTL position

IM, CI is the whole chromosome where each QTL is located

IM,  CI is 10 cM in length centered at the putative QTL position

0

20

40

60

80

100

P
o

w
er

 o
r 

F
D

R
 (

%
)

MD=5 cM

MD=10 cM

MD=20 cM

MD=40 cM

0

20

40

60

80

100

P
o

w
er

 o
r 

F
D

R
 (

%
)

0

20

40

60

80

100

P
o

w
er

 o
r 

F
D

R
 (

%
)

0

20

40

60

80

100

40
14

0
24

0
34

0
44

0
54

0 40
14

0
24

0
34

0
44

0
54

0 40
14

0
24

0
34

0
44

0
54

0 40
14

0
24

0
34

0
44

0
54

0 40
14

0
24

0
34

0
44

0
54

0 40
14

0
24

0
34

0
44

0
54

0 40
14

0
24

0
34

0
44

0
54

0 40
14

0
24

0
34

0
44

0
54

0 40
14

0
24

0
34

0
44

0
54

0

P
o

w
er

 o
r 

F
D

R
 (

%
)

Population size
PVE=1% PVE=2% PVE=3% PVE=4% PVE=5% PVE=10% PVE=20%  PVE=30% FDR

Figure 2 QTL detection power and FDR from 1000 simulation runs of ICIM (a, c) and IM (b, d) across a range of population sizes for IQ1–IQ8
corresponding to eight levels of explained phenotypic variance (PVE; PVE¼ 1, 2, 3, 4, 5, 10, 20 and 30%) and four marker densities (MD;
MD¼ 5, 10, 20 and 40 cM). The confidence interval (CI) was assumed to be either the whole chromosome in which each QTL is located (a, b),
or 10 cM in length centered at the putative QTL position (c, d).
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estimation of QTL position, the convergence speed
depends mostly on the QTL effect, but ICIM has a much
faster convergence speed. The QTL effect tends to be
overestimated for ICIM and IM, especially for QTL with
small effects (Figure 4 and Supplementary Figure S4).
This has been noted before (Beavis, 1994; Zeng, 1994; Li
et al., 2007), and can be explained properly. In a limited-
size mapping population, detection power is low,
especially when PVE is o5% (Figure 2). In simulation,
only peaks higher than the threshold LOD score are
counted. Those with smaller estimated effects may result
in peaks lower than the LOD threshold, and are therefore

not counted when calculating the average estimated
effect. When all peaks are counted, an approximately
unbiased estimation of the QTL effect can be achieved,
regardless of PS (Li et al., 2007).

PS required to detect QTL with a certain power
As previously mentioned, IQ1–IQ8 were not linked in
the simulation study. Although the CI of each QTL is the
whole chromosome for calculating detection power and
estimating QTL location and effect in Figures 2–4 and
Supplementary Figures S2–S4, the required PS to detect
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Figure 3 Deviations to true positions from 1000 simulation runs of ICIM (a, b) and IM (c, d) across a range of population sizes for IQ1–IQ8
corresponding to eight levels of phenotypic variance explained (PVE; PVE¼ 1, 2, 3, 4, 5, 10, 20 and 30%) and two marker densities (MD;
MD¼ 5 and 40 cM). The confidence interval (CI) was assumed to be the whole chromosome. Positions were estimated from peaks in the CI
having the LOD score over the predefined threshold of 2.5.

Table 3 Length of 95% empirical CIs of QTL positions using two population sizes (i.e., PS¼ 200 and 400) and four marker densities (that is,
MD¼ 5, 10, 20 and 40 cM)

Method QTL PS¼ 200 PS¼ 400

MD¼ 5 MD¼ 10 MD¼ 20 MD¼ 40 MD¼ 5 MD¼ 10 MD¼ 20 MD¼ 40

ICIM IQ1 93.30 104.55 103.10 120.03 47.00 61.94 76.83 88.24
IQ2 54.14 62.37 73.66 86.08 37.55 32.38 38.34 47.59
IQ3 52.65 47.12 50.02 48.18 25.64 21.95 18.78 33.36
IQ4 38.89 46.14 41.94 56.72 25.01 18.46 22.74 36.57
IQ5 25.99 37.83 44.73 59.74 16.35 16.39 22.54 36.30
IQ6 10.31 8.35 11.29 46.45 3.72 4.78 7.92 22.74
IQ7 8.55 10.19 14.78 26.97 4.90 6.04 8.70 15.56
IQ8 5.33 8.23 11.56 18.62 3.18 4.78 6.62 12.62

IM IQ1 146.62 124.56 145.39 174.82 94.50 83.54 105.63 102.08
IQ2 94.24 61.91 88.64 103.07 62.00 60.83 64.14 84.35
IQ3 92.98 84.86 87.70 54.31 54.27 43.44 50.65 40.16
IQ4 62.92 66.54 77.53 58.33 44.99 42.84 45.45 50.42
IQ5 53.90 65.68 60.58 64.81 33.86 39.00 48.75 56.04
IQ6 32.23 27.37 24.85 59.31 11.41 13.25 13.39 36.80
IQ7 14.02 15.06 21.22 34.97 7.52 9.46 13.76 21.79
IQ8 7.91 11.87 15.56 25.18 4.93 6.81 9.29 16.82

Abbreviations: CI, confidence interval; ICIM, inclusive composite interval mapping; IM, interval mapping; PVE, phenotypic variance
explained; QTL, quantitative trait locus.
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QTL at four probability levels are given in Table 4. In
general, larger populations are needed to map QTL with
smaller genetic effects, whereas small populations can
only have high power for detecting QTL with larger
genetic effects. For ICIM in populations with a size of
approximately 200, the probability of detecting QTL with
PVE o3% is low, no matter how many markers are
screened (Table 4). For QTL with PVE of o5%, a slightly
smaller population is required to achieve similar detec-
tion power when more markers are used. As shown in
Figure 1 and Supplementary Figures S1 and S2, the
power of QTL with PVE of o5% can be improved by
increasing MD when ICIM is used. However, increasing
MD had little effect on QTLs with larger genetic effects

(Table 4). For the two largest QTLs, that is, IQ7 and IQ8,
similar PS is needed for ICIM and IM to reach similar
detection power. But IM needs much larger PS for other
QTLs. For instance, when MD¼ 10 cM, at least 70 DH
lines are needed for ICIM to detect IQ6 with 80%
probability, whereas more than two times of DH lines are
needed if IM is used.

When the CI of each QTL was designated as a 10 cM
interval with the QTL sitting in the center, the required
PS for ICIM and IM to detect the QTL at four probability
levels are shown in Table 5. For example, if IQ2 is located
at 32 cM on chromosome 2 (Table 1), the interval from 27
to 37 cM will be the CI. Power simulated in this way
represents the probability that the QTL will be identified
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Figure 4 Deviations to true additive effects from 1000 simulation runs of ICIM (a, b) and IM (c, d) across a range of population sizes for IQ1–
IQ8 corresponding to eight levels of phenotypic variance explained (PVE; PVE¼ 1, 2, 3, 4, 5, 10, 20 and 30%) and two marker densities (MD;
MD¼ 5 and 40 cM). The confidence interval (CI) was assumed to be the whole chromosome. Effects were estimated from peaks in the CI
having a LOD score over the predefined threshold of 2.5.

Table 4 Population sizes required to identify QTLs on predefined chromosomes using four marker densities (i.e., MD¼ 5, 10, 20 and 40 cM)
and four levels of detection power (that is, 0.6, 0.7, 0.8 and 0.9)

Method QTL MD¼ 5 MD¼ 10 MD¼ 20 MD¼ 40

0.6 0.7 0.8 0.9 0.6 0.7 0.8 0.9 0.6 0.7 0.8 0.9 0.6 0.7 0.8 0.9

ICIM IQ1 300 300 300 560 380 460 540 4600 600 4600 4600 4600 600 4600 4600 4600
IQ2 160 160 160 300 180 220 280 320 260 320 360 460 260 320 360 460
IQ3 110 110 110 200 120 160 180 200 160 180 220 280 160 180 220 280
IQ4 100 100 100 160 100 120 140 180 140 160 200 240 140 160 200 240
IQ5 80 80 80 140 80 100 120 140 120 140 160 200 120 140 160 200
IQ6 50 50 50 80 50 70 70 80 60 80 80 100 60 80 80 100
IQ7 40 40 40 60 40 40 50 60 40 60 60 80 40 60 60 80
IQ8 40 40 40 40 40 40 40 40 40 40 40 60 40 40 40 60

IM IQ1 4600 4600 4600 4600 4600 4600 4600 4600 4600 4600 4600 4600 4600 4600 4600 4600
IQ2 580 4600 4600 4600 4600 4600 4600 4600 4600 4600 4600 4600 4600 4600 4600 4600
IQ3 400 440 520 4600 400 480 560 4600 400 480 580 4600 440 480 600 4600
IQ4 300 340 420 500 320 380 440 540 360 420 480 600 380 440 500 4600
IQ5 240 280 340 400 240 300 340 420 280 320 400 480 360 420 500 580
IQ6 120 140 160 180 120 140 160 200 120 140 160 200 180 220 260 320
IQ7 60 60 80 100 60 60 80 100 80 80 100 120 80 100 120 140
IQ8 40 40 60 60 40 40 60 60 40 60 60 80 60 60 60 80

Abbreviations: ICIM, inclusive composite interval mapping; IM, interval mapping; QTL, quantitative trait locus.
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in the interval between 27 and 37 cM. As expected, a
larger PS is needed to map QTL with similar power
(Table 5), compared with the PS needed when CI was set
as the whole chromosome (Table 4). A larger difference
between ICIM and IM was observed for QTL with small
effects and when lower marker density was used.

Effect of PS and marker density on the detection

of coupling linkage
The dissection of linked QTL depends much on empty
marker intervals isolating the linked QTL, the distance
between linked QTL and PS. Two QTLs located at one
marker interval are less likely to be separated. Hence, the
first requirement for dissection of linked QTLs is that
there has to be at least one empty marker interval, that is,
the linked QTLs are isolated (Whittaker et al., 1996; Li
et al., 2007). When the genetic distance between LQ1 and
LQ2 was 10 cM, there were no empty marker intervals
between LQ1 and LQ2 for MD¼ 40, 20 and 10 cM. In this
case, ICIM identified one ‘ghost’ QTL between LQ1 and
LQ2, and the genetic effect was estimated as the sum of
two QTLs (Figure 5 and Supplementary Figures S5A–S5C).

When the genetic distance between LQ1 and LQ2 was 20
or 30 cM, LQ1 and LQ2 were not isolated by empty marker
intervals for MD¼ 40, and 20 cM, and ICIM could not
separate LQ1 and LQ2 properly either (Figure 5g–i). For
MD¼ 10 and 5 cM, LQ1 and LQ2 were isolated by at least
one empty marker interval. Two clear peaks can be
observed on the mean LOD profile of ICIM for PS¼ 300
and PS¼ 500 (Figures 5h, i, n and o). However, the LOD
score for PS¼ 100 was low, and thus LQ1 and LQ2 may not
be separated precisely. On the other hand, when the
distance between LQ1 and LQ2 was 10 cM, only one peak
could be observed on the mean LOD profile of ICIM for
PS¼ 500 (Figure 5c), although LQ1 and LQ2 were isolated
by one empty marker interval for MD¼ 5 cM. For the
10 cM linkage, mapping populations with sizes 4500 are
needed to separate the linked QTL properly. Therefore,
isolated QTLs is the necessary condition for ICIM to dissect
relatively close linkages, but at the same time, a larger PS is
also needed.

IM was proposed based on the assumption that at
most one QTL was located on each chromosome or
linkage group (Lander and Botstein, 1989). Our simula-
tion results showed that IM cannot dissect LQ1 and
LQ2 for any PS, MD and linkage distance in the coupling
phase (Figures 5d–f, j–l and p–r), which was the
major reason for proposing CIM and ICIM. When two
linked QTLs were not separated properly, the LOD
score around the linked QTL region was affected by
both QTLs. In fact, only one ‘ghost’ QTL between the
two linked QTL was observed; its estimated effect was
equal to the sum of the two QTLs. In comparison,
when two linked QTLs were separated properly, the
LOD score was affected only by the QTL around the
testing region. In other words, only one QTL contributed
to the LOD score as the testing position moved along the
chromosome. Therefore, for the coupling linkage, higher
LOD score and power were observed when LQ1 and
LQ2 were not separated by either ICIM or IM (Figure 5
and Supplementary Figure S6). The higher power
observed for IM than for ICIM under low MD and small
PS (Supplementary Figure S5 and S6) does not indicate
that IM can separate linked QTLs better than ICIM.

Effect of PS and marker density on the detection

of repulsive linkage
Most findings for coupling linkage are applicable
for repulsion. When LQ1 and LQ2 were 10 cM apart,
there were no empty marker intervals between them
for MD¼ 40, 20 and 10 cM, and ICIM identified no
QTLs between them (Figures 6a–c and Supplementary
Figure S7) because of their opposite genetic effects.
When LQ1 and LQ2 were 20 or 30 cM apart, there were
empty marker intervals between them for MD¼ 10, and
5 cM, and ICIM separated them properly (Figures 6g–i,
and m–o). As with the coupling linkage, in a mapping
population of small PS, it is impossible for ICIM to
precisely dissect LQ1 and LQ2 linked in the repulsive
phase even when MD¼ 5 cM (Figures 6g and m).
When LQ1 and LQ2 were 30 cM apart, two peaks were
observed on the average LOD score of IM (Figures 6q

Table 5 Population sizes required to identify QTLs within the 10-cM predefined CI using four marker densities (i.e., MD¼ 5, 10, 20 and
40 cM) and four levels of detection power (that is, 0.6, 0.7, 0.8 and 0.9)

Method IQ MD¼ 5 MD¼ 10 MD¼ 20 MD¼ 40

0.6 0.7 0.8 0.9 0.6 0.7 0.8 0.9 0.6 0.7 0.8 0.9 0.6 0.7 0.8 0.9

ICIM IQ1 460 500 4600 4600 560 4600 4600 4600 4600 4600 4600 4600 4600 4600 4600 4600
IQ2 280 340 440 4600 300 360 460 4600 520 4600 4600 4600 4600 4600 4600 4600
IQ3 180 240 260 380 200 240 300 440 220 280 340 520 380 4600 4600 4600
IQ4 160 180 220 300 180 220 280 380 280 320 440 4600 520 4600 4600 4600
IQ5 120 160 180 300 140 180 220 320 220 300 360 580 460 4600 4600 4600
IQ6 80 100 100 140 80 100 120 140 80 100 120 160 300 380 520 4600
IQ7 60 60 80 120 60 80 100 120 100 140 160 200 160 240 300 460
IQ8 40 60 60 100 60 60 80 100 80 100 120 160 100 140 180 260

IM IQ1 4600 4600 4600 4600 4600 4600 4600 4600 4600 4600 4600 4600 4600 4600 4600 4600
IQ2 4600 4600 4600 4600 4600 4600 4600 4600 4600 4600 4600 4600 4600 4600 4600 4600
IQ3 440 500 600 4600 500 580 4600 4600 600 4600 4600 4600 4600 4600 4600 4600
IQ4 320 380 480 560 400 500 560 4600 540 4600 4600 4600 4600 4600 4600 4600
IQ5 260 320 380 440 300 380 440 4600 480 540 4600 4600 4600 4600 4600 4600
IQ6 140 140 180 220 140 180 200 240 160 180 240 360 420 580 4600 4600
IQ7 80 80 100 120 80 100 100 160 120 140 200 320 220 300 440 4600
IQ8 40 60 60 80 60 60 80 120 80 100 140 200 120 180 280 400

Abbreviations: CI, confidence interval; ICIM, inclusive composite interval mapping; IM, interval mapping; QTL, quantitative trait locus.
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and r), but the genetic effect was greatly underestimated
(Supplementary Figure S8). In comparison, ICIM still
achieved an asymptotically unbiased estimation of
genetic effect, regardless of the linkage phase (Supple-
mentary Figures S5 and S8).

Discussion

ICIM is a useful step forward that highlights the
importance of model selection and interval testing in

QTL mapping. While conducting the interval test in
ICIM, the genetic variations in other marker intervals
and chromosomes are completely controlled (Li et al.,
2007), resulting in much higher LOD score than IM at
chromosomal regions with QTL but in much lower LOD
score where no QTL is located. QTL detection power and
FDR were calculated from LOD score; therefore, ICIM
has much higher power but lower FDR than IM,
indicating the great improvement over IM. ICIM has
also been shown to offer improvements on CIM and
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Figure 5 Average LOD scores from 1000 simulation runs of ICIM (a–c, g–i and m–o) and IM (d–f, j–l and p–r) for two linked QTLs (LQ1 and
LQ2) in the coupling phase, four marker densities (MD; MD¼ 5, 10, 20 and 40 cM) and three population sizes (PS; PS¼ 100, 300 and 500). The
confidence interval (CI) was assumed to be 10 cM in length centered at the putative QTL position. LOD scores were calculated for each
scanned chromosomal position by averaging the 1000 simulation runs. Three linkage distances were considered, that is, 10 cM for a–f, 20 cM
for g–l and 30 cM for m–r.
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some Bayesian models (Li et al., 2007, 2008; Zhang et al.,
2008). In practice, ICIM has been successfully applied to
identify flowering time QTL in maize nested association
mapping population (Buckler et al., 2009).

ICIM is based on the interval test, involving a large
number of statistical tests along a genome. The compli-
cated nature of the QTL mapping method makes it less
likely that its statistical properties can be explicitly
derived. However, these properties can be properly
investigated through computer simulation. The large-
scale simulations conducted in this study showed that as

PS increases, the estimated QTL position and the effect
from ICIM asymptotically approach their true values,
regardless of the QTL effect and marker density. Larger-
effect QTLs reach unbiased position estimation faster,
and at the same time, the increase in marker density and
PS is useful for achieving a more accurate estimation of
QTL position.

The development and use of single-nucleotide poly-
morphism markers and increasing capacity of the
high-throughput genotyping platform enable the use
of denser markers than had been previously used.
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Figure 6 Average LOD scores from 1000 simulation runs of ICIM (a–c, g–i and m–o) and IM (d–f, j–l and p–r) for two linked QTLs (LQ1 and
LQ2) in the repulsive phase, four marker densities (MD; MD¼ 5, 10, 20 and 40 cM) and three population size (PS; PS¼ 100, 300 and 500). The
confidence interval (CI) was assumed to be 10 cM in length centered at the putative QTL position. LOD scores were calculated for each
scanned chromosomal position by averaging the 1000 simulation runs. Three linkage distances were considered, that is, 10 cM for a–f, 20 cM
for g–l and 30 cM for m–r.
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However, the question does arise as to whether the
increase in marker density can improve QTL mapping
efficiency significantly enough to warrant the investment
in more marker data points in existing genetic
populations. From the simulations in this study, in-
creased marker density did not improve the QTL
mapping efficiency of IM, which is consistent with
what Darvasi et al. (1993) showed. But for ICIM, with
better control of background noise, simulation results
indicate that the use of dense markers can improve the
detection power of QTL with medium-to-small genetic
effects.

Dissection of linked QTLs depends mainly on their
linkage distance, genetic effects, PS and marker density.
The genetic effects of non-isolated QTLs are difficult to
separate. For linked QTLs, we need at least one empty
interval. It is therefore expected that higher marker
density will provide greater potential to resolve QTLs
that are more closely linked. Simulations in this
study showed that denser markers helped ICIM narrow
down the QTL positions and dissect linked QTLs.
However, the dissection of linked QTLs is also depen-
dent on the mapping PS. In a small population, linked
QTLs cannot be separated even if they are isolated by
dense markers. Therefore, only large populations can
take advantage of densely distributed markers. It is thus
more advisable to increase marker density accompanied
by an increase in PS.

Simulation results in this paper extend the studies by
Darvasi et al. (1993) and Beavis (1994), and provide
relatively simple approximations of statistical power for
detecting QTLs with a series of effect sizes for a
predefined CI. If the purpose of a genetic study is to
detect QTL with PVE X5% by ICIM within 10 cM of CI
with 90% probability, at least 300, 320, 580 and 4600
individuals are needed for MD¼ 5, 10, 20 and 40 cM,
respectively (Table 5). On the other hand, if a mapping
population has been built, we can roughly evaluate QTL
mapping efficiency. For instance, with intermediate
marker density and PS, say MD¼ 10 cM and PS¼ 200,
we have a more than 90% chance of mapping QTL with
PVE 410%, a more than 70% chance of mapping QTL
with PVE 45% and a more than 60% chance of mapping
QTL with PVE 43% within 10 cM of their true positions
(Table 5).

We focused on additive genetic models in this
study because they are most important and consistent
in the genetic architecture of most of species, and
thus most useful in molecular design breeding, espe-
cially for selecting inbred lines. In maize nested associa-
tion mapping population, a simple additive model
accurately predicts flowering time for a range of related
germplasm (Buckler et al., 2009). Except for additive
effects, epistasis also has an important role in the
genetic control of complex traits, although it is
more difficult to be detected because of the complexity
of its pattern. To apply it, it is essential for breeders
to know the mapping efficiency of epistasis for their
current data set or for future experimental design.
Further simulations are needed to explore the statistical
power of ICIM for mapping epistatic QTL and
thus facilitate the detection of reliable and consistent
epistasis.
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