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Abstract

Conventional plant breeding largely depends on phenotypic selection and breeder’s experience, therefore the breeding

efficiency is low and the predictions are inaccurate.  Along with the fast development in molecular biology and

biotechnology, a large amount of biological data is available for genetic studies of important breeding traits in plants,

which in turn allows the conduction of genotypic selection in the breeding process.  However, gene information has not

been effectively used in crop improvement because of the lack of appropriate tools.  The simulation approach can utilize

the vast and diverse genetic information, predict the cross performance, and compare different selection methods.  Thus,

the best performing crosses and effective breeding strategies can be identified.  QuLine is a computer tool capable of

defining a range, from simple to complex genetic models, and simulating breeding processes for developing final advanced

lines.  On the basis of the results from simulation experiments, breeders can optimize their breeding methodology and

greatly improve the breeding efficiency.  In this article, the underlying principles of simulation modeling in crop enhancement

is initially introduced, following which several applications of QuLine are summarized, by comparing the different selection

strategies, the precision parental selection, using known gene information, and the design approach in breeding.  Breeding

simulation allows the definition of complicated genetic models consisting of multiple alleles, pleiotropy, epistasis, and

genes, by environment interaction, and provides a useful tool for breeders, to efficiently use the wide spectrum of genetic

data and information available.
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INTRODUCTION

Phenotype of a biological individual is attributed to
genotypic and environmental effects.  The major
breeding objective is to develop new genotypes that
are genetically superior to those currently available,
for a specific target population of environments (Fehr
1987; Falconer and Mackay 1996; Lynch and Walsh
1998).  To achieve this objective, breeders face many
complex choices in the design of efficient crossing

and selection strategies aimed at combining the desired
alleles into a single target genotype.  For example, in
the bread wheat breeding program of the International
Maize and Wheat Improvement Center (CIMMYT),
two major breeding strategies are commonly used and
thousands of crosses are made every season.  Though
breeders spend great efforts in choosing parents to
make the targeted crosses, approximately 50-80% of
the crosses are discarded in generations F

1
 to F

8
,

following the selection for agronomic traits (e.g., plant
height, lodging tolerance, tillering, appropriate heading
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date, and balanced yield components), disease resistance
(e.g., stem rust, leaf rust, and stripe rust), and end-use
quality (e.g., dough strength and extensibility, protein
quantity and quality).  Then, after two cycles of yield
trials (i.e., preliminary yield trial in F

8
 and replicated

yield trial in F
9
), only 10% of the initial crosses remain,

among which 1-3% of the crosses originally made are
released as cultivars from CIMMYT’s international
nurseries (Wang et al. 2003, 2005).  Significant
resources can therefore be saved if the potential
performance of a cross, using a defined selection
strategy, can be accurately predicted.

On the other hand, a great amount of studies on QTL
mapping have been conducted for various traits in plants
and animals in recent years (Zeng 1994; Tanksley and
Nelson 1996; Frary et al. 2000; Barton and Keightley
2002; Li et al. 2003).  As the number of published
genes and QTLs for various traits continues to increase,
the challenge for plant breeders is to determine how to
best utilize this multitude of information for the
improvement of crop performance.  Quantitative
genetics provides much of the framework for the design
and analysis of selection methods used within breeding
programs (Falconer and Mackay 1996; Lynch and Walsh
1998; Goldman 2000).  However, there are usually
associated assumptions, some of which can be easily
tested or satisfied by experimentation; others can
seldom, if ever, be met.  Computer simulation provides
us with a tool to investigate the implications of relaxing
some of the assumptions and the effect this has on the
conduct of a breeding program (Kempthone 1988).
Breeding simulation allows the definition of complicated
genetic models consisting of multiple alleles, pleiotropy,
epistasis, and genes by environment interaction, and
provides a useful tool to breeders, who can efficiently
use the wide spectrum of genetic data and information
available.  This approach will be very helpful when the
breeders want to compare breeding efficiencies from
different selection strategies, to predict the cross
performance with known gene information, and to
investigate the efficient use of identified QTLs in
conventional breeding, and so on.

In this article, the principles of simulation modeling
in plant breeding are introduced initially, and then several
applications using the simulation tool of QuLine are
summarized.

PRINCIPLES OF SIMULATION MODELING IN
PLANT BREEDING

The genetics and breeding simulation module of
QuLine

QU-GENE is a simulation platform for quantitative
analysis of genetic models, which consists of a two-
stage architecture (Podlich and Cooper 1998).  The
first stage is the engine, and its role is to: (1) define the
genotype by environment (GE) system (i.e., all the
genetic and environmental information of the simulation
experiment), and (2) generate the starting population of
individuals (base germplasm) (Fig.1).  The second stage
encompasses the application modules, whose role is to
investigate, analyze, or manipulate the starting population
of individuals within the GE system defined by the
engine.  The application module usually represents the
operation of a breeding program.  A QU-GENE strategic
application module, QuLine, has therefore been
developed to simulate the breeding procedure deriving
inbred lines (Fig.1).

Built on QU-GENE, QuLine (previously called
QuCim) is a genetics and breeding simulation tool, which
can integrate various genes with multiple alleles operating
within epistatic networks and differentially interacting
with the environment, and predict the outcome from a
specific cross following the application of a real selection
scheme (Wang et al. 2003; Wang et al. 2004).  It
therefore has the potential to provide a bridge between
the vast amount of biological data and the breeder’s
queries on optimizing selection gain and efficiency.
QuLine has been used to compare two selection
strategies (Wang et al. 2003), to study the effects on
selection of dominance and epistasis (Wang et al. 2004),
to predict cross performance using known gene
information (Wang et al. 2005), and to optimize marker-
assisted selection to efficient pyramid multiple genes
(Kuchel et al. 2005; Wang et al. 2007).

Genetic models used in simulation

The simulation principles are illustrated by using
CIMMYT’s wheat breeding program as an example.
Two breeding strategies are commonly used in
CIMMYT’s wheat breeding programs.  The MODPED
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(modified pedigree) method begins with pedigree
selection of individual plants in the F

2
, followed by three

bulk selections from F
3
 to F

5
, and pedigree selection in

the F
6
; hence the name modified pedigree/bulk.  In the

SELBLK (selected bulk) method, spikes of selected F
2

plants within one cross are harvested in bulk and
threshed together, resulting in one F

3
 seed lot per cross.

This selected bulk selection is also used from F
3
 to F

5
,

whereas, pedigree selection is used only in the F
6
.  A

major advantage of SELBLK compared to MODPED is
that fewer seed lots need to be harvested, threshed,
and visually selected for seed appearance, leading to
significant saving of time, labor, and costs associated
with nursery preparation, planting, and plot labeling
ensue (van Ginkel et al. 2002).  The flowchart of
SELBLK is shown in Fig.2.

Seven agronomic traits and three rust resistances
are the major traits used in selection in CIMMYT’s wheat
breeding programs.  The gene number and genetic values
are derived from discussions with breeders and from
analyses of past unpublished experiments.  In total it is
postulated that 59 independently segregating genes
control these traits (Table 1).  The genetic effects of
traits other than yield are considered fixed.  Pleiotropic
effects are included to account for trait correlations,
and they are also considered fixed.  Two kinds of

pleiotropic effects are included, although more
complicated pleiotropic interaction can also be defined
within the QU-GENE engine.  The first kind is positive
pleiotropy, such as, the pleiotropic effects on lodging
from genes for grains per spike.  The second kind is
the negative pleiotropy, such as, the pleiotropic effects
on kernel weight from genes for grains per spike.  As
shown in Table 1, at Cd. Obregon the three lodging
genes, the stem rust genes, and the leaf rust genes have
some degree of negative effect on the yield, and the
five kernel weight genes have a positive pleiotropic
effect.  Stem rust, leaf rust, heading, tillering, and grains-
per-spike genes have a negative pleiotropic effect on
kernel weight (Table 1).  Stripe rust rarely occurs at
Cd. Obregon, hence, there is no selection for stripe
rust when the nursery is grown there and the genetic
effects of stripe rust genes are considered to be zero in
this environment (Table 1).

Apart from the pleiotropic effects of genes affecting
other traits, it is postulated that there are 20 genes yield
per se(italic is necessary?), even though their very
existence has been debated.  Four gene effect models
were considered for yield, those are, pure additive
[AD0, Aa = (AA + aa)/2, where A and a represent the
two alleles at each locus affecting the yield], partial
dominance [AD1, Aa ¹ (AA+aa)/2, but is between AA

Fig. 1  Flowchart of the breeding simulation tool QuLine.  The two ellipses represent the two computer programs, i.e., QU-GENE and
QuLine; the parallelograms represent inputs for QU-GENE and QuLine; and the rectangles represent outputs from QU-GENE and QuLine.
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Fig. 2  Germplasm flow in CIMMYT’s Wheat Breeding Program.  The breeding strategy described was called selected bulk selection method.

and aa], a combination of partial, complete, and
overdominance (AD2, the genetic values of AA, Aa and
aa are independent), and digenic interaction (ADE)
(Wang et al. 2004).

Definition of breeding strategies in QuLine

By defining breeding strategy, QuLine translates the
complicated breeding process in a way that the computer
can understand and simulate.  QuLine allows for several
breeding strategies, which were contained in one input
file, to be defined simultaneously.  The program then
makes the same virtual crosses for all the defined
strategies at the first breeding cycle.  Hence, all strategies
start from the same point (the same initial population,
the same crosses and the same genotype and
environment system), allowing appropriate comparison.

A breeding strategy in QuLine is defined as all the
crossing, seed propagation, and selection activities in
an entire breeding cycle.  A breeding cycle begins with
crossing and ends at the generation when the selected
advanced lines are returned to the crossing block, as
new parents.  SELBLK (Fig.2) is defined in Tables 2
and 3.

Number of generations in MODPED and number
of selection rounds in each generation

In the breeding program in Fig.2, the best advanced
lines developed from the F

10
 generation will be returned

to the crossing block to be used for new crosses; that
is to say a new breeding cycle starts after the F

10
 leaf

rust screening at El Batan.  Therefore, the number of
generations in one breeding cycle is 10 for SELBLK
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(Fig.2 and Table 2).  The crossing block (viewed as F
0
)

and the 10 generations need to be defined in SELBLK.
The parameters to define a generation consist of the
number of selection rounds in the generation, an indicator
for seed source (explained later), and the planting and

selection details for each selection round (Table 2).  Most
generations in this breeding program have just one
selection round, for example, F

1
 to F

6
, whereas, some

generations have more than one selection round as they
are grown simultaneously at different sites or under
different conditions, for example, F

7
, F

8
, and F

9
 (see

Table 2  Definition of the selected bulk method for developing inbred lines in QuLine

Number of Seed Generation Seed propagation Generation advanceNumber of Individual plants Number of Environment

selection rounds source title1) type method replications in a plot test locations type

1 F0 self bulk 1 20 1 Toluca

1 F1 singlecross bulk 1 20 1 Cd. Obregon

1 F2 self bulk 1 1000 1 Toluca

1 F3 self bulk 1 500 1 Cd. Obregon

1 F4 self bulk 1 625 1 Toluca

1 F5 self bulk 1 625 1 Cd. Obregon

1 F6 self pedigree 1 750 1 Toluca

4 0 F7 self bulk 1 70 1 Cd. Obregon

F8(T) self bulk 1 70 1 Toluca

F8(B) self bulk 1 70 1 El Batan

F8(YT) self bulk 1 100 1 Cd. Obregon

4 0 F8(SP) self bulk 1 30 1 Cd. Obregon

F9(T) self bulk 1 70 1 Toluca

F9(B) self bulk 1 70 1 El Batan

F9(YT) self bulk 2 100 1 Cd. Obregon

1 F9(SP) self bulk 1 30 1 Cd. Obregon

2 0 F10(LR) self bulk 1 30 1 El Batan

F10(YR) self bulk 1 30 1 Toluca

1) T, the breeding location of Toluca; B, the breeding location of El Batan; YT: yield trial; SP: small plot evaluation; LR, leaf rust; YR, stripe rust.

Table 1  Number of segregating genes and their genetic effects in the Cd. Obregon environment type1)

Individual gene effects

AA Aa aa

Yield 20 Yield (t/ha)                                       Four genetic models for yield: AD0 (pure additive),

                                                 AD1(partial dominance), AD2 (overdominance), ADE (digenic epistasis)

Lodging 3 Lodging (%) 0.00 5.00 10.00

Yield (t ha-1) 0.00 -0.40 -0.80

Stem rust 5 Stem rust (%) 0.00 0.50 1.00

Yield (t ha-1) 0.00 -0.25 -0.50

Kernel weight (g) 0.00 -0.75 -1.50

Leaf rust 5 Leaf rust (%) 0.00 5.00 10.00

Yield (t ha-1) 0.00 -0.25 -0.50

Kernel weight (g) 0.00 -0.75 -1.50

Stripe rust 5 Stripe rust 0.00 0.00 0.00

Height 3 Height (cm) 40.00 30.00 20.00

Lodging (%) 5.00 2.50 0.00

Maturity 5 Maturity (day) 20.00 16.00 12.00

Kernel weight (g) -1.00 -0.50 0.00

Tillering 3 Tillering (no.) 5.00 3.00 1.00

Lodging 2.00 1.00 0.00

Maturity (day) 1.00 0.50 0.00

Grains per ear -1.00 -0.50 0.00

Kernel weight (g) -1.50 -0.75 0.00

Grains per ear 5 Gains per ear 14.00 10.00 6.00

Lodging (%) 2.00 1.00 0.00

Kernel weight (g) -1.00 -0.50 0.00

Kernel weight 5 Kernel weight (g) 12.00 8.50 5.00

Yield (t ha-1) 1.00 0.50 0.00

Lodging (%) 2.00 1.00 0.00

1) There is no stripe rust in the Cd. Obregon environment type, so the effects of the 5 genes for stripe rust were set at 0. However, these genes have effects in the other

   two environment types.

Gene classification Number of genes Traits affected
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the first column in Table 2).

Seed propagation type for each selection round

The seed propagation type describes how the selected
plants in a retained family, from the previous selection
round or generation, are propagated, to generate the
seed for the current selection round or generation.  There
are nine options for seed propagation, presented here in
the order of increasing genetic diversity (F

1
 excluded):

(i) clone (asexual reproduction), (ii) DH (doubled
haploid), (iii) self (self-pollination), (iv) singlecross

(single crosses between two parents), (v) backcross

(back crossed to one of the two parents), (vi) topcross

(crossed to a third parent, also known as three-way
cross), (vii) doublecross (crossed between two F

1
s),

(viii) random (random mating among the selected plants
in a family), and (ix) noself (random mating but self-
pollination is eliminated).  The seed for F

1
 is derived

from crossing among the parents in the initial popula-
tion (or crossing block).  QuLine randomly determines
the female and the male parents for each cross from a
defined initial population, or alternately, one may select
some preferred parents from the crossing block.  The
selection criteria used to identify such preferred par-
ents (grouped here as the male and female master lists)
can be defined in terms of among-family and within-

family selection descriptors (see below for details) within
the crossing block (referred to as F

0
 generation).  By

using the parameter of seed propagation type, most, if
not all methods of seed propagation in self-pollinated
crops can be simulated in QuLine.

Two seed propagation types were used in SELBLK,
which were, singlecross (only used for F

1
 generation)

and self (Table 2).

Generation advance method for each selection
round

The generation advance method describes how the
selected plants within a family are harvested.  There
are two options for this parameter: pedigree (the selected
plants within a family are harvested individually,
therefore each selected plant will result in a distinct
family in the next generation), and bulk (the selected
plants in a family are harvested in bulk, resulting in just
one family in the next generation).  This parameter and
the seed propagation type allow QuLine to simulate not
only the traditional breeding methods, such as, pedigree
breeding and bulk population breeding, but also many
combinations of different breeding methods (e.g.,
pedigree selection until the F

4
 and then doubled haploid

production on selected F
4
 plants).  The bulk generation

advance method will not change the number of families

Table 3  Traits and their selected proportions in each generation in the selected bulk method

Generation    Selection Yie ld Lodg ing Stem rust Leaf rustStripe rust Height Maturi ty Til lering Grains per ear Kernel weight Total selected proportion

 mode Top Bottom Bottom Bottom Bottom Middle Middle Top Top Top

F1 Among-family 0.98 0.99 0.85 0.99 0.98 0.90 0.97 0.70
F2 Among-family 0.99 0.99 0.90 0.99 0.99 0.99 0.99 0.85

Within-family 0.95 0.99 0.40 0.85 0.90 0.60 0.50 0.08
F3 Among-family 0.99 0.90 0.95 0.85

Within-family 0.90 0.70 0.90 0.90 0.80 0.25 0.60 0.06
F4 Among-family 0.99 0.96 0.95 0.90

Within-family 0.90 0.65 0.95 0.90 0.80 0.20 0.60 0.05
F5 Among-family 0.99 0.6 0.95 0.90

Within-family 0.90 0.70 0.90 0.90 0.80 0.20 0.60 0.05
F6 Among-family 0.99 0.96 0.95 0.90

Within-family 0.90 0.70 0.90 0.98 0.95 0.10 0.05
F7 Among-family 0.85 0.70 0.98 0.96 0.85 0.70 0.75 0.25
F8(T) Among-family 0.55 0.70 0.99 0.99 0.98 0.90 0.55
F8(B) Among-family 0.90 0.90
F8(YT) Among-family 0.40 0.40
F8(SP) Among-family 1.00
F9(T) Among-family 0.97 0.95 0.99 0.99 0.90
F9(B) Among-family 0.95 0.95
F9(YT) Among-family 0.40 0.40
F9(SP) Among-family 1.00
F10(YR) Among-family 0.98 0.98
F10(LR) Among-family 0.98 0.98
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in the following generation if no among-family selection
is applied in the current generation, whereas, the
pedigree method increases the number of families rapidly
if among-family selection intensity is weak, and several
plants are selected within each retained family.  For a
generation with more than one selection round, the
generation advance method for the first selection round
can be either pedigree or bulk.  The subsequent selection
rounds are used to determine which families derived
from the first selection round will advance to the next
generation.  In the majority of cases, bulk generation
advance is the preferred option for the subsequent
selection rounds.

It can be seen from Table 2 that pedigree is only
used in F

6
 and bulk is used in the other generations in

SELBLK.

Field experimental design for each selection
round

The parameters used to define the virtual field
experimental design in each selection round include the
number of replications for each family, the number of
individual plants in each replication, the number of test
locations, and the environment type for each test location
(Table 2).  Each environment type defined in the genotype
and environment system has its own gene action and
gene interaction, which provides the framework for
defining the genotype by environment interaction.
Therefore, by defining the target population of
environments as a mixture of environment types,
genotype by environment interactions are defined as a
component of the genetic architecture of a trait.

It can be seen from Table 2, for example, that F
7 
is

grown in the Cd.Obregon environment, F
8
(T) in Toluca,

F
8
(B) in El Batan, and F

8
(YT) in Cd. Obregon.

Among-family selection and within-family
selection for each selection round

Ten traits have been included as relevant (Table 1) for
the selection process in the breeding program described
in Fig.2.  Among-family selection and within-family
selection are distinct processes in a breeding strategy.
However, the definition of these two types of selections
is essentially the same: the number of traits to be selected

is followed by the definition of each trait (Table 3; Wang
et al. 2004).

Apart from the trait code there are two parameters
that define a trait used in the selection: selected
proportion and selection mode.  Among-family selection,
the selected proportion is the percentage of families to
be retained, and within-family selection it is the
percentage of individual plants to be selected in each
retained family.  There are four options for the trait
selection mode: (i) top (the individuals or families with
highest phenotypic values for the trait of interest will
be selected, for example, yield, tillering, grains per spike,
and kernel weight), (ii) bottom (the individuals or families
with the lowest phenotypic values will be selected, for
example, lodging, stem rust, leaf rust, and stripe rust),
(iii) middle (individuals or families with medium trait
phenotypic values will be selected, for example, height
and heading), and (iv) random (individuals or families
will be randomly selected).  Independent culling is used
if multiple traits are considered for among-family or
within-family selection.  If there is no among-family or
within-family selection for a specific selection round,
the number of selected traits is noted as 0.  The traits
for both among-family and within-family selections can
be the same or different, as is the case for selected
proportions (Table 3).  The traits for selection may also
differ from generation to generation, as may the selected
proportions for traits.

Taking F
6
 as an example, three traits are used for

among-family selection, and they are, the 2 (lodging),
5 (leaf rust), and 8 (tillering) traits.  Six traits are used
for within-family selection, and they are the 2 (lodging),
5 (leaf rust), 6 (height), 7 (heading), 8 (tillering), and 9
(grains per spike) traits.  The selected proportions of
these traits can be seen from Table 3.

It should be noted that some new functionalities have
just been added to QuLine to select families or individuals
with trait values above or below some preassigned
values, or to select a predefined number of families or
individuals.

Phenotypic value of a genotype and family mean
of a family

For the purpose of simulation, the genotypic value of a
genotype can be calculated from the definition of gene
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actions.  However, breeders select on the basis of
phenotypic value.  Therefore, the phenotypic value of a
genotype in a specific environment needs to be defined
from its genotypic value and some associated
environmental errors.  For example, if there are n plots
(or replications) for a family and the plot size is m,
there will be n × m individual plants (or genotypes) for

this family.  The genotypic value g
ij
 i = 1, …, n; j = 1,

…m can be determined from the defined genetic models,

and the phenotypic value p
ij
 can then be calculated from

the formula p
ij
 = g

ij
 + e

bi
 +e

wij
, where e

bi
 is the between-

plot error for plot i, e
wij

 is the within-plot error for the
genotype j in the plot i, and both e

wij
 and e

bi
 are assumed

to be normally distributed.  The variance (2
eó ) of e

wij
 is

calculated from the definition of heritability in the broad

sense 
22

2
2

eg

g
b óó

ó
h

+
= , where the genetic variance (2gó )

is calculated from the genotypic values of individuals in
the reference population.  Once the error variance is
determined, it will be used for all generations without
change.  The genetic variance changes from generation
to generation, therefore, heritability may be different in
different generations.

APPLICATIONS OF THE BREEDING
SIMULATION MODULE QuLine

Comparison of modified pedigree (MODPED)
and selected bulk (SELBLK)

Some small-scale field experiments were conducted
comparing the efficiencies of MODPED and SELBLK
(Singh et al. 1998), however, the efficiency of SELBLK
compared with that of MODPED remains untested on
a larger scale.  The genetic models developed accounted
for epistasis, pleiotropy, and genotype by environment
(GE) interaction (Table 1).  For both breeding strategies,
the simulation experiment comprised of the same 1 000
crosses developed from 200 parents.  A total of 258
advanced lines remained following 10 generations of
selection.  The two strategies were each applied 500
times on 12 GE systems.

The average adjusted genetic gain on yield across
all genetic models was 5.83 for MODPED and 6.02 for
SELBLK, a difference of 3.3% (Fig.3-A).  This

difference is not large and therefore unlikely to be
detected using field experiments (Singh et al. 1998).
However, it can be detected through simulation, which
indicates that the high level of replication (50 models
by 10 runs in this experiment) is feasible with simulation
and can better account for the stochastic properties
from a run of a breeding strategy, and from the sources
of experimental errors.  The average adjusted gains for
the two yield gene numbers 20 and 40 were 6.83 and 5.
02, respectively, suggesting that genetic gain decreases
with increasing yield gene number.

The number of crosses remaining after one breeding
cycle was significantly different among models and
strategies, but not among runs.  The number of crosses
remaining from SELBLK was always higher than that
from MODPED, which means that delaying pedigree
selection favors diversity.

On an average, 30 more crosses were maintained in
SELBLK (Fig.3-B).  However, there was a crossover
between the two breeding strategies (Fig.3-B).  Prior
to F

5
 the number of crosses in MODPED was higher

than that in SELBLK.  The number of crosses became
smaller in MODPED after F

5,
 when pedigree selection

was applied in F
6
.  Among-family selection from F

1
 to

F
5
 in SELBLK was equal to among-cross selection, and

resulted in a greater reduction in the cross numbers for
SELBLK compared to MODPED, in the early
generations.  In general, only a small proportion of
crosses remained at the end of a breeding cycle (11.8%
for MODPED and 14.8% for SELBLK); therefore,
intense among-cross selection in early generations was
unlikely to reduce the genetic gain.  On the contrary,
breeders would tend to concentrate on fewer but “higher
probability” crosses.  The fact that just a few crosses
of the many generated remained after the final yield
trial stage, was common in most breeding programs.
As more crosses remained in SELBLK, the population
following selection from SELBLK might have a larger
genetic diversity than that from MODPED.  In this
context also, SELBLK is superior to MODPED.

As the number of families and selection methods after
F

8
 were basically the same for both MODPED and

SELBLK, only the resources allocated from F
1
 to F

8

were compared.  The total number of individual plants
from F

1
 to F

8
 was calculated to be 5,155,090 for

MODPED and 3,358,255 for SELBLK (Fig.3-C).
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Assuming that planting intensity is similar, SELBLK will
use approximately two thirds of the land allocated to
MODPED.  Furthermore, SELBLK produced smaller
number of families compared to MODPED.  From F

1

to F
8
, there were 63,188 families for MODPED, but

only 24,260 for SELBLK, approximately 40% of the
number for MODPED (Fig.3-D).  Therefore when
SELBLK is used, fewer seed lots need to be handled at
both harvest and sowing, resulting in a significant saving
in time, labor, and cost.

Parental selection using known gene information

Selecting parents to make crosses is the first and
essential step in plant breeding (Fehr 1987).  Because
of incomplete gene information (that is, only some
resistance genes and their effects on phenotype are
known, whereas, some are not.  Most genes for
agronomic traits are unknown), many seemingly good
crosses are discarded during the segregating phase of a
breeding program.  Generally speaking, the cross with
the highest progeny mean and largest genetic variance
has the most potential to produce the best lines

(Bernardo 2002).  Under an additive genetic model, the
midparent value is a good predictor of the progeny mean,
but the variance cannot be deduced from the
performance of the parents alone.  The best way to
estimate the progeny variance is to generate and test
the progeny.  Breeders normally use one of two types
of parental selection: one based on parental information,
such as, parental performance or the genetic diversity
among parents; the other based on parental and progeny
information.  In the first case, previous studies found
that both high × high and high × low crosses have the
potential to produce the best lines, and the correlation
between the genetic distance of parents and their
progeny performance is not high.  In the second case,
the progeny needs to be grown and tested, which
precludes parental selection.  Because of complicated
intra-genic, inter-genic, and gene-by-environment
interactions, no method has given a precise prediction
of cross performance (Wang et al. 2005).

Cross performance can be accurately predicted when
information about the genes controlling the traits of
interest is known.  If progeny arrays after selection in a
breeding program could be predicted, then the efficiency

Fig. 3  Comparision of modified pedigree and selected bulk from the simulation experiment. A, adjusted genetic gain after one breeding cycle
across all experimental sets; B, number of crosses after each generation’s selection across all experimental sets; C, number of families in
each generation in one breeding cycle; D, number of individual plants in each generation in one breeding cycle.
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of plant breeding would be greatly increased.  For the
majority of economically important traits in wheat
breeding, the genes controlling their expression remain
unknown.  However, for wheat quality this information
is known, though incompletely, for certain aspects of
wheat quality (Eagles et al. 2002, 2004).  How cross
performance, following selection, can be predicted in
wheat quality breeding by using QuLine, under the
condition that all the gene information of key selection
traits is known is demonstrated here.

The eight Silverstar wheat sister l ines are
morphologically very similar, but have different values
for two important quality traits, Rmax and extensibility.
Supposing it is intended to use Silverstar in crosses
with other adapted wheat cultivars, such as, Westonia,
Krichauff, Machete, and Diamondbird, without losing
grain quality, which sister line should one use? Relevant
single crosses were made by QuLine between the four
selected parents and the eight Silverstar sister lines.  For
each cross, 1 000 F

8
 lines were developed from 1 000

F
2
 individual plants by single seed descent.  Forty F

8

lines were finally selected, based on line performance
for Rmax and/or extensibility, resulting in a selected
proportion of 0.04.  Four selection schemes were
considered: (1) the 40 lines were selected based only
on line performance for Rmax (R0.04); (2) 200 lines
were first selected based on line performance for Rmax
and subsequently 40 lines were selected based on
extensibility (R0.2E0.2); (3) 200 lines were first selected
based on line performance for extensibility and then the
40 lines were selected based on Rmax (E0.2R0.2); (4)
40 lines were selected based only on line performance
for extensibility (E0.04).

When using crosses with Westonia, Silverstar 3 and
7 show the largest improvement in Rmax, when Rmax

is used in selection (i.e., R0.04, R0.2E0.2, and E0.2R0.
2) (Table 4).  They can also improve extensibility in
combination with Westonia, particularly when selecting
for extensibility (i.e., R0.2E0.2 and E0.2R0.2).  When
high Rmax and extensibility together are the required
quality traits, but Rmax is more important, they are
both parents of choice; however, Silverstar 3 is the
better of the two (Table 4).

For crosses with Krichauff, if selection is solely for
Rmax, or if it is selected first when both traits are
targeted for selection (i.e., R0.04 and R0.2E0.2),
Silverstar 1, 3, 5, and 7 can result in similar
improvements in Rmax and extensibility.  In crosses
with Krichauff, if selection is solely for extensibility, or
if extensibility is selected first, when both traits are
targeted for selection (i.e., E0.2R0.2 and E0.04), then
Silverstar 3 and 7 are the best parents for improving
both traits (Table 4).
For crosses with Machete, Silverstar 3, 4, 7, and 8 are
the best parents to improve Rmax if it is the only trait
selected, or if it is selected first when both traits are
targeted for selection (i.e., R0.04 and R0.2E0.2).
However, to improve extensibility simultaneously, Rmax
should be selected first and then extensibility (i.e.,
R0.2E0.2).  If extensibility is selected before Rmax,
then Silverstar 4 and 8 should be chosen to improve
both traits in crosses with Machete (Table 4).

For crosses with Diamondbird, the use of Silverstar
1, 2, 3, and 4 can cause a slight increase in Rmax and
extensibility, if Rmax is the trait targeted for selection
(i.e., R0.04 and R0.2E0.2).  If extensibility is targeted
for selection (i.e., E0.2R0.2 and E0.04), then only
Silverstar 3 and 4 can improve both traits slightly.
Clearly, parental selection depends on the breeding
objective and definition of the selection scheme.  In

Table 4  The best Silverstar sister lines for the four selected parents, under different breeding objectives

                           Selection scheme 1)

R0.04 R0.2E0.2 E0.2R0.2 E0.04

Westonia High Rmax (BU) 3, 7 3, 7 3, 7 1, 3

High extensibility (cm) 1 1, 5 1, 3, 5 1, 3, 5, 7

Krichauff High Rmax (BU) 1, 3, 5, 7 1, 3, 5, 7 3, 7 3, 7

High extensibility (cm) 1, 3, 5, 7 1, 3, 5, 7 1, 5 1, 5

Machete High Rmax (BU) 3, 4, 7, 8 3, 4, 7, 8 4, 8 None

High extensibility (cm) 1, 2, 5, 6 1, 2, 5, 6 1, 2, 3 1, 2, 3, 4

Diamondbird High Rmax (BU) 1, 2, 3, 4 1, 3, 4 3, 4 3, 4

High extensibility (cm) None None 1, 2, 5, 6 1, 2, 5, 6

1) R, Rmax; E, extensibility; trait followed by selected proportion.

Parent to be improved Breeding objective
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most instances, the lines that can improve Rmax are
not the best lines for improving extensibility (Table
4).

Design breeding using identified QTL-marker
associations

The concept of design breeding was proposed in recent
years as the fast development in molecular marker
technology (Bernardo 2002; Peleman and Voort 2003;
Wan 2006).  Three steps are involved in design breeding.
The first step is to identify the genes for breeding traits,
the second step is to evaluate the allelic variation in
parental lines, and the third step is to design and conduct
breeding.  Genotypic selection is used in design breeding
based on identified gene-marker associations.  Here
QuLine is used to demonstrate the design breeding in
improving rice grain quality.

Rice quality is a complex character consisting of
many components, such as, milling, appearance,
nutritional, cooking, and eating qualities.  For the
improvement of appearance, milling, and eating qualities,
the endosperm of high-quality rice varieties should be
free of chalkiness (low or zero area of chalky endosperm
or ACE), as chalky grains have a lower density of starch
granules compared to the vitreous ones, and are
therefore more prone to breakage during milling.
Meanwhile, it has been well known that amylose content

(AC) is the most important factor affecting rice eating
quality.  Therefore, low ACE and high AC are generally
favored in rice quality breeding.  Some QTL for ACE
and AC have been identified using 65 chromosome
segment substitution (CSS) lines (Table 5).  These CSS
lines were generated from a cross between the japonica
rice variety Asominori (the background parent, denoted
as P

1
) and the indica rice variety IR24 (the donor parent,

denoted as P
2
) (Wan et al. 2005, 2006).

Table 5 shows the significant markers (representing
chromosome segments) for ACE and AC through a
likelihood ratio test based on stepwise regression (Wang
et al. 2006).  It is impossible to derive an inbred with
the minimum of ACE and the maximum of AC, as QTL
on segments M35, M57, and M59 have unfavorable
pleiotropic effects on ACE and AC.  But the ideal inbred
with relatively low ACE and high AC can be identified
through simulation.  This designed inbred contains four
segments from IR24, which are, M19, M35, M57, and
M60, and another genome is from the background parent
Asominori (Table 6).  The value of ACE in this inbred is
9.2%, where the theoretical minimum ACE is 0.  The
value of AC is 17.73%, whereas, the theoretical
maximum of AC is 22.3%.  Among the 65 CSS lines,
the three lines, CSSL15, CSSL29, and CSSL49, have
the required target segments, therefore, can be used as
the parental lines in breeding (Table 6).

Three possible topcrosses can be made among the

Table 5  QTL mapping results of ACE and AC in the population consisting of 65 CSS lines

QTL for ACE

Marker M19* M35** M38* M39* M43* M57** M59**

LOD score 0.94 2.16 1.19 1.54 1.23 16.86 10.02

Additive effect (%) -1.80 -1.63 1.20 -1.31 -0.88 5.93 4.96

Percentage of variance explained (%) 1.10 2.66 1.43 1.70 1.47 35.00 16.56

QTL for AC

Marker M6* M14** M21* M35* M38* M57** M59** M60** M63**

LOD score 1.07 2.60 1.40 0.92 1.37 7.24 4.66 4.34 1.48

Additive effect (%) 0.47 -0.61 -0.35 -0.36 -0.43 1.12 1.03 0.71 0.45

Percentage of variance explained (%) 1.89 4.83 2.48 1.62 2.41 15.97 9.28 8.59 2.59

* Significance level 0.05; **  significance level 0.01.

Table 6  Marker types and predicted genetic values on AC and ACE of a designed genotype and three CSS lines

Chromosome 3 3 5 8 9                                      Predicted value

Marker M19 M21 M35 M57 M60 ACE (%) AC (%)

Designed genotype 2 1 2 2 2 9.27 17.73

CSSL15 2 2 1 1 1 0.55 14.09

CSSL29 1 1 2 1 1 0.88 14.07

CSSL49 1 1 1 2 2 16.13 18.44

1 and 2 represent the chromosome segment from background parent Asominori and donor parent IR24, respectively.
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three parental lines, Topcross 1: (CSSL15 × CSSL29)
× CSSL49, Topcross 2: (CSSL15 × CSSL49) ×
CSSL29, and Topcross 3: (CSSL29 × CSSL49) ×
CSSL15.  Different marker assisted selection (MAS)
schemes can be used to select the target inbred line.
Here two schemes are considered. Scheme 1:200
topcross F

1
 (TCF

1
) were first generated.  Then 20

doubled haploid (DH) were derived from each TCF
1

individual.  The target inbred lines were selected from
the 4000 DH lines.  Scheme 2:  200 topcross F

1
 (TCF

1
)

were first generated.  An enhancement selection (Wang
et al. 2007), was conducted among the 200 TCF

1

individuals.  Then 20 doubled haploid (DH) were derived

from each selected TCF
1
 individual.  The target inbred

lines are selected from those derived DH lines.  QuLine
was used to implement the above selection procedure.

From 100 simulation runs, it was found that by using
Scheme 1, 27 target inbred lines were selected from
Topcross 1, 13 from Topcross 2, and 8 from Topcross
3 (Table 7).  Therefore Topcross 1 had the largest
probability to select the target inbred line, and should
be used in breeding low ACE and AC inbred lines.  The
two MAS schemes resulted in significant difference in
cost when genotyping for MAS.  Scheme 1 required
4 000 DNA samples for each topcross.  On the contrary,
Scheme 2 required 462 DNA samples for Topcross 1,

324 for Topcross 2, and 691 for Topcross 3.  Topcross
1 combined with Scheme 2 resulted in the least DNA
samples per selected line (Table 7), and therefore was
the best crossing and selection scheme.

DISCUSSION

Breeding strategies used by CIMMYT breeders have
evolved with time.  Pedigree selection was used
primarily from 1944 to 1985.  From 1985 until the
second half of the 1990s, the main selection method
was a modified pedigree/bulk method (MODPED) (van
Ginkel et al. 2002), which successfully produced many
of the widely adapted wheats now being grown in the
developing world.  This method was replaced in the
late 1990s by the selected bulk method (SELBLK) (van
Ginkel et al. 2002) in an attempt to improve resource-
use efficiency.  Before simulation, the breeders already
knew that SELBLK could save costs compared to
MODPED.  The simulation not only confirmed this
knowledge, but also gave a clear answer to the breeder

that the adoption of SELBLK would not cause a yield
gain penalty.  Simulation also indicated a fact that
CIMMYT’s breeders did not realize.  The fact was that
SELBLK could retain more crosses in the final selected
population.  When this result came out, CIMMYT’s
historical breeding books were checked and it was found
that this was true.  Therefore simulation can not only
confirm breeders’ intuitive experiences, but can also
find out some facts which breeders do not realize.

In field-based breeding, the breeder selects the
phenotype.  However, in simulation the genotype must
be defined.  The genotypic value of the genotype can
be calculated from the definition of gene actions.  The
phenotypic value and family mean can be found from
the genotypic value and i ts associated error
(environmental deviation).  QuLine then conducts
within-family selection from phenotypic values and
among-family selection from family means.  A sensible
definition of genetic models is thus essential for any
such simulation, as it determines the phenotypic value
of a genotype and then the phenotypic mean of a

Table 7  Comparison of the three top crosses and the two marker selection schemes

Marker selection Individuals in TCF1 Individuals in TCF1 Lines before Lines after DNA samples DNA samples per

scheme before selection after selection selection selection (S.E.) to be tested selected line

Top cross 1: (CSSL15 × CSSL29) × CSSL49

Scheme 1 200 200 4000 27.1 (6.6) 4000 148

Scheme 2 200 13 262 16.7 (6.2) 462 28

Top cross 2: (CSSL15 × CSSL49) × CSSL29

Scheme 1 200 200 4000 12.9 (4.9) 4000 310

Scheme 2 200 6 124 7.9 (4.5) 324 41

Top cross 3: (CSSL29 × CSSL49) × CSSL15

Scheme 1 200 200 4000 7.5 (3.1) 4000 536

Scheme 2 200 25 491 7.7 (3.1) 691 89
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population to which the selection is applied.  However,
given the current state of the knowledge of gene-to-
phenotype relationships for complex traits, it is difficult
to comprehensively define a real genetic model.

In the future it will be possible to build more realistic
genetic models if advances in genomics improve the
understanding of the genotype to phenotype relationship
and genotype by environment interactions (Bernardo
2002; Cooper et al. 2005).  Conclusions on the relative
merits of breeding strategies based on simple gene-to-
phenotype models may have to be re-evaluated in the
context of an exponentially growing knowledge base.
This information will aid in determining gene number
and gene effects on phenotype.  In addition, conventional
plant breeding provides a wealth of information about
trait heritability and trait correlation.  This information,
once determined, will help define errors, linkage, and
pleiotropic effects.  In addition, crop physiological
models may also help fine-tune the genetic models for
breeding modeling (Reymond et al. 2003; Yin et al.
2004; Hammer et al. 2005).

As there is accumulation in the knowledge of the
genetics for most breeding traits, simulation modeling
will become more and more important, as computer
simulation can help to investigate many what-if crossing
and selection scenarios, and allows many scenarios to
be tested in silico in a short period of time, which in
turn helps breeders make important decisions before
conducting highly resource demanding f ield
experiments.
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